JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

分子印迹光子晶体技术在食品检测中的应用研究进展

都炳强,张志毅,赵晓磊,李迎秋,何金兴

downloadPDF
都炳强, 张志毅, 赵晓磊, 等. 分子印迹光子晶体技术在食品检测中的应用研究进展[J]. 轻工学报, 2020, 35(6): 16-26. doi: 10.12187/2020.06.003
引用本文:都炳强, 张志毅, 赵晓磊, 等. 分子印迹光子晶体技术在食品检测中的应用研究进展[J]. 轻工学报, 2020, 35(6): 16-26.doi:10.12187/2020.06.003
DU Bingqiang, ZHANG Zhiyi, ZHAO Xiaolei, et al. Research progress in the application of molecularly imprinted photonic crystal technology in food detection[J]. Journal of Light Industry, 2020, 35(6): 16-26. doi: 10.12187/2020.06.003
Citation:DU Bingqiang, ZHANG Zhiyi, ZHAO Xiaolei, et al. Research progress in the application of molecularly imprinted photonic crystal technology in food detection[J]. Journal of Light Industry, 2020, 35(6): 16-26.doi:10.12187/2020.06.003

分子印迹光子晶体技术在食品检测中的应用研究进展

    作者简介:都炳强(1995-),男,山东省潍坊市人,齐鲁工业大学硕士研究生,主要研究方向为食品安全快速检测技术.;
  • 基金项目:山东省重点研发计划(公益类)项目(2018GNC110029)

  • 中图分类号:TS202.1

Research progress in the application of molecularly imprinted photonic crystal technology in food detection

  • Received Date:2020-05-25

    CLC number:TS202.1

  • 摘要:在简述分子印迹技术、光子晶体技术和分子印迹光子晶体技术的基础上,对分子印迹光子晶体技术在食品有毒有害物质(兽药残留、农药残留、生物毒素、内分泌干扰物、非法添加物)和营养物质检测中的相关应用研究进行综述.指出:分子印迹光子晶体技术结合了分子印迹技术对目标物的高选择性和光子晶体独特的光学性质,作为新型光学传感器适用于食品检测领域;与传统的食品检测方法相比,分子印迹光子晶体技术在保证检测准确性的前提下极大地提高了可视化检测程度和检测效率,缩短了检测时间,更有利于现场检测的发展;然而,分子印迹光子晶体技术也存在合成过程较复杂、需要使用大量有机试剂、检测范围较窄、重复性较差等缺点.未来可就开发环境友好的绿色制备方法、增强光子晶体的稳定性和可控性、降低分子印迹光子晶体的非特异性吸附、开发适用于同时检测多种目标物的高通量检测方法、拓展在微生物检测领域的应用等方面作进一步研究,以优化和发展分子印迹光子晶体技术.
    1. [1]

      CHEN L X,XU S F,LI J H.Recent advances in molecular imprinting technology:Current status,challenges and highlighted applications[J].Chemical Society Reviews,2011,40(5):2922.

    2. [2]

      RAMSTROM O,ANDERSSON L I,MOSBACH K.Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by mole-cular imprinting[J].Journal of Organic Chemistry,1993,58(26):7562.

    3. [3]

      ARMSTRONG E,ODWYER C.Artificial opal photonic crystals and inverse opal structures-fundamentals and applications from optics to energy storage[J].Journal of Materials Chemistry C,2015,3(24):6109.

    4. [4]

      DAVIS K E,RUSSELL W B.Disorder-to-order transition in settling suspensions of colloidal silica:X-ray measurements[J].Science,1989,245(4917):507.

    5. [5]

      JOHNSON N P,MCCOMB D W,RICHEL A,et al.Synthesis and optical properties of opal and inverse opal photonic crystals[J].Synthetic Metals,2001,116(1):469.

    6. [6]

      VELEV O D,JEDE T A,LOBO R F,et al.Porous silica via colloidal crystallization[J].Nature,1997,389(6650):447.

    7. [7]

      DENKOV N D,VELEV O D,KRALCHEVSKY P A,et al.Two-dimensional crystallization[J].Nature,1993,361(6407):26.

    8. [8]

      DIMITROV A S,NAGAYAMA K.Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces[J].Langmuir,1996,12(5):1303.

    9. [9]

      HOLGADO M,GARCIASANTAMARIA F,BLANCO A,et al.Electrophoretic deposition to control artificial opal growth[J].Langmuir,1999,15(14):4701.

    10. [10]

      ZHANG J H,SUN Z Q,YANG B.Self-assembly of photonic crystals from polymer colloids[J].Current Opinion in Colloids & Interface Science,2009,14(2):103.

    11. [11]

      XU Y,SUN H B,YE J Y,et al.Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips[J].Journal of the Optical Society of America B,2001,18(8):1084.

    12. [12]

      FEIGEL A,KOTLER Z,SFEZ B,et al.Chalcogenide glass-based three-dimensional photonic crystals[J].Applied Physics Letters,2000,77(20):3221.

    13. [13]

      ROBBIE K,BRETT M J.Sculptured thin films and glancing angle deposition:Growth mecha-nics and applications[J].Journal of Vacuum Science & Technology A,1997,15(3):1460.

    14. [14]

      ROBBIE K,FRIEDRICH L J,DEW S K,et al.Fabrication of thin films with highly porous microstructures[J].Journal of Vacuum Science & Technology A (Vacuum,Surfaces,and Films),1995,13(3):1032.

    15. [15]

      ROBBIE K,SIT J C,BRETT M J.Advanced techniques for glancing angle deposition[J].Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures),1998,16(3):1115.

    16. [16]

      YABLONOVITCH E,GMITTER T J,LEUNG K M.Photonic band structure:The face-centered-cubic case employing nonspherical atoms[J].Physical Review Letters,1991,67(17):2295.

    17. [17]

      ZBAY E,TUTTLE G,SIGALAS M,et al.Defect structures in a layer-by-layer photonic band-gap crystal[J].Physical Review B,1995,51(20):13961.

    18. [18]

      ZAKHIDOV A A,BAUGHMAN R H,IQBAL Z,et al.Carbon structures with three-dimensional periodicity at optical wavelengths[J].Science,1998,282(5390):897.

    19. [19]

      LI L,LIN Z Z,HUANG Z Y,et al.Rapid detection of sulfaguanidine in fish by using a photonic crystal molecularly imprinted polymer[J].Food Chemistry,2019,281:57.

    20. [20]

      YANG H W,PAN L,HAN Y P,et al.A visual water vapor photonic crystal sensor with PVA/SiO2opal structure[J].Applied Surface Science,2017,423:421.

    21. [21]

      SURDO S,CARPIGNANO F,MERLO S,et al.Near-infrared silicon photonic crystals with high-order photonic bandgaps for high-sensitivity chemical analysis of water-ethanol mixtures[J].ACS Sensors,2018,3(11):2223.

    22. [22]

      ZHANG Y H,REN H H,YU L P.Development of molecularly imprinted photonic polymers for sensing of sulfonamides in egg white[J].Analytical Methods,2018,10(1):101.

    23. [23]

      YANG Q,PENG H,LI J,et al.Label-free colorimetric detection of tetracycline using analyte-responsive inverse-opal hydrogels based on molecular imprinting technology[J].New Journal of Chemistry,2017,41(18):10174.

    24. [24]

      HOU J,ZHANG H,YANG Q,et al.Hydrophilic-hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline[J].Small,2015,11(23):2738.

    25. [25]

      WANG L Q,LIN F Y,YU L P.A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food[J].Analyst,2012,137(15):3502.

    26. [26]

      WANG Y F,XIE T S,YANG J,et al.Fast screening of antibiotics in milk using a molecularly imprinted two-dimensional photonic crystal hydrogel sensor[J].Analytica Chimica Acta,2019,1070:97.

    27. [27]

      WANG Y F,FAN J,MENG Z H,et al.Fabrication of an antibiotic-sensitive 2D-molecularly imprinted photonic crystal[J].Analytical Methods,2019,11(22):2875.

    28. [28]

      CHEN S L,SUN H,HUANG Z J,et al.The visual detection of anesthetics in fish based on an inverse opal photonic crystal sensor[J].RSC Advances,2019,9(29):16831.

    29. [29]

      ZHOU C H,WANG T T,LIU J Q,et al.Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol[J].Analyst,2012,137(19):4469.

    30. [30]

      LU Y,LV(LYU) L,HE J X,et al.Preparation of hydrophilic molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of trace tetracyclines residues in animal derived foods[J].Journal of Separation Science,2020,43:2172.

    31. [31]

      WANG X,MU Z D,LIU R,et al.Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid[J].Food Chemistry,2013,141(4):3947.

    32. [32]

      HUANG C,CHENG Y,GAO Z W,et al.Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring[J].Sensors & Actuators B(Chemical),2018,273:1705.

    33. [33]

      LIU F,HUANG S Y,XUE F,et al.Detection of organophosphorus compounds using a molecularly imprinted photonic crystal[J].Biosensors & Bioelectronics,2012,32(1):273.

    34. [34]

      WU Z,TAO C G,LIN CX,et al.Label-free colorimetric detection of trace atrazine in aqueous solution by using molecularly imprinted photonic polymers[J].Chemistry:A European Journal,2008,14(36):11358.

    35. [35]

      WANG R,SUN X,WANG X,et al.Spherical conjugated microporous polymers for solid phase microextraction of carbamate pesticides from water samples[J].Journal of Chromatography A,2020,1626:461360.

    36. [36]

      何厚罗,乌恩琦,宋艳秋,等.适配体光子晶体传感材料的制备及初步应用[J].解放军预防医学杂志,2018,36(2):163.

    37. [37]

      ZHANG Y,JIN Z K,ZENG Q S,et al.Visual test for the presence of the illegal additive ethyl anthranilate by using a photonic crystal test strip[J].Microchimica Acta,2019,186(11):685.

    38. [38]

      KADHEM A,XIANG S T,NAGEL S C,et al.Molecularly imprinted polymer film for the detection of testosterone in aqueous samples[J].Polymers,2018,10(4):349.

    39. [39]

      GUO C,ZHOU C,SAI N,et al.Detection of bisphenol A using an opal photonic crystal sensor[J].Sensors & Actuators B,2012,166:17.

    40. [40]

      DAI J J,VU D C,NAGEL S C,et al.Colloidal crystal templated molecular imprinted polymer for the detection of 2-butoxyethanol in water contaminated by hydraulic fracturing[J].Mikrochimica Acta,2018,185(1):32.

    41. [41]

      LU W,ASHER S A,MENG Z H,et al.Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal[J].Journal of Hazardous Materials,2016,316:87.

    42. [42]

      LIU Z H,ZHANG X,LIANG A X,et al.Preparation and application of melamine molecularly imprinted photonic crystal hydrogel sensor[J].Chinese Journal of Chromatography,2019,37(3):287.

    43. [43]

      YOU A,CAO Y H,CAO G Q.Colorimetric sensing of melamine using colloidal magnetically assembled molecularly imprinted photonic crystals[J].RSC Advances,2016,6(87):83663.

    44. [44]

      CHEN Q S,SHI W H,CHENG M F,et al.Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine[J].Microchimica Acta,2018,185(12):557.

    45. [45]

      ZHANG Y L,PAN Z,YUAN Y,et al.Molecularly imprinted photonic crystals for the direct label-free distinguishing of l-proline and d-proline[J].Physical Chemistry Chemical Physics,2013,15(40):17250.

    46. [46]

      DU T,CHENG J,WU M,et al.An in situ immobilized pipette tip solid phase microextraction method based on molecularly imprinted polymer monolith for the selective determination of difenoconazole in tap water and grape juice[J].Journal of Chromatography B,2014,951(1):104.

    1. [1]

      孔金明. 生物芯片技术在食品安全领域的应用综述. 轻工学报, 2013, 28(1): 1-6,15.doi: 10.3969/j.issn.2095-476X.2013.01.001

    2. [2]

      王琳琳,高兴明,韦海涛,范小雪,王存芳. 固定化酶在食品工业中的应用研究进展. 轻工学报, 2021, 36(2): 25-33.doi: 10.12187/2021.02.004

    3. [3]

      景建洲,李红利,孙新城,胡金强,耿尧,高辉,张华. 食源性致病菌分子生物学检测技术研究进展. 轻工学报, 2015, 30(5-6): 27-32.doi: 10.3969/j.issn.2095-476X.2015.5/6.006

    4. [4]

      傅亮,吕金羚,张锦,庄国栋,朱勇,陈永生. 分子模拟技术在食品组分互作体系及安全领域的应用研究进展. 轻工学报, 2023, 38(2): 1-13.doi: 10.12187/2023.02.001

    5. [5]

      张健锋,吴日伟,牛利民,李歆琰,李铭煊,麦泽彬,谭国斌,高伟. 基于单光子电离飞行时间质谱技术的船载走航VOCs监测方法. 轻工学报, 2022, 37(1): 103-109.doi: 10.12187/2022.01.014

    6. [6]

      季宝成,杨澜瑞,韩雨,白艳红,许旭. 动物源性食品兽药多残留检测中基质净化与液相色谱-质谱联用技术研究进展. 轻工学报, 2023, 38(5): 8-16.doi: 10.12187/2023.05.002

    7. [7]

      张勋才,孙军伟,王茜,崔光照. 基于DNA分子的信息安全技术研究综述. 轻工学报, 2016, 31(1): 67-74.doi: 10.3969/j.issn.2096-1553.2016.1.012

    8. [8]

      姜利英,陈青华,王云龙,崔光照. 用于检测小分子靶标的电流型识体传感器研究进展. 轻工学报, 2011, 26(2): 56-59.doi: 10.3969/j.issn.1004-1478.2011.02.014

    9. [9]

      张锁江,刘艳荣,聂毅. 离子液体溶解天然高分子材料及绿色纺丝技术研究综述. 轻工学报, 2016, 31(2): 1-14.doi: 10.3969/j.issn.2096-1553.2016.2.001

    10. [10]

      付海燕,卢欢欢,龙婉君,佘远斌. 动物源食品中抗生素残留检测方法与研究进展. 轻工学报, 2023, 38(6): 37-45.doi: 10.12187/2023.06.005

    11. [11]

      苑彬,金慧,骈琳,高思今,黄泽华. 美拉德反应对食品品质与安全的影响及其产物检测研究进展. 轻工学报, 2024, 39(2): 60-68.doi: 10.12187/2024.02.008

    12. [12]

      王雯雯,相启森,白艳红. UV-LEDs技术在食品杀菌保鲜领域中的应用研究进展. 轻工学报, 2022, 37(1): 46-54.doi: 10.12187/2022.01.007

    13. [13]

      蒋亚平,曹聪聪,梅骁. 网络入侵检测技术的研究进展与展望. 轻工学报, 2017, 32(3): 63-72.doi: 10.3969/j.issn.2096-1553.2017.3.011

    14. [14]

      张蔓,魏明宝,马闯,张宏忠,赵继红. 分子生物学技术在堆肥微生物研究中的应用综述. 轻工学报, 2013, 28(3): 13-19.doi: 10.3969/j.issn.2095-476X.2013.03.004

    15. [15]

      胡金强,雷俊婷,詹丽娟,纵伟,白艳红,景建洲,孙新城,董彩文. 免疫学技术在食源性微生物检测中的应用综述. 轻工学报, 2014, 29(3): 7-11.doi: 10.3969/j.issn.2095-476X.2014.03.002

    16. [16]

      胡金强,雷俊婷,景建洲,孙新城,高辉,耿尧,章银良,董彩文,姜春鹏. 食源性致病菌PCR检测技术研究进展. 轻工学报, 2016, 31(3): 49-56.doi: 10.3969/j.issn.2096-1553.2016.3.007

    17. [17]

      许颖梅. 基于Web数据流技术的网络入侵检测研究. 轻工学报, 2012, 27(3): 11-14.doi: 10.3969/j.issn.1004-1478.2012.03.003

    18. [18]

      王宏伟,许可,张艳艳,刘兴丽,张华. 淀粉老化的影响因素及其检测技术研究进展. 轻工学报, 2021, 36(1): 17-29.doi: 10.12187/2021.01.003

    19. [19]

      胡金强,丁慧敏,詹丽娟,赵卫东,侯莹莹,孙新城,高辉,耿尧. 食源性致病菌多重PCR检测技术建立及其应用. 轻工学报, 2022, 37(1): 12-19.doi: 10.12187/2022.01.002

    20. [20]

      陈志军,郝营,杨清香,张翔,齐连怀,汤凯,朱海燕,王丹. Zn2+离子印迹Fe3O4-壳聚糖纳米粒子的制备及对Zn2+吸附性能的研究. 轻工学报, 2014, 29(1): 74-78.doi: 10.3969/j.issn.2095-476X.2014.01.015

  • 加载中
计量
  • PDF下载量:19
  • 文章访问数:1221
  • 引证文献数:0
文章相关
  • 收稿日期:2020-05-25
    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    都炳强, 张志毅, 赵晓磊, 等. 分子印迹光子晶体技术在食品检测中的应用研究进展[J]. 轻工学报, 2020, 35(6): 16-26. doi: 10.12187/2020.06.003
    引用本文:都炳强, 张志毅, 赵晓磊, 等. 分子印迹光子晶体技术在食品检测中的应用研究进展[J]. 轻工学报, 2020, 35(6): 16-26.doi:10.12187/2020.06.003
    DU Bingqiang, ZHANG Zhiyi, ZHAO Xiaolei, et al. Research progress in the application of molecularly imprinted photonic crystal technology in food detection[J]. Journal of Light Industry, 2020, 35(6): 16-26. doi: 10.12187/2020.06.003
    Citation:DU Bingqiang, ZHANG Zhiyi, ZHAO Xiaolei, et al. Research progress in the application of molecularly imprinted photonic crystal technology in food detection[J]. Journal of Light Industry, 2020, 35(6): 16-26.doi:10.12187/2020.06.003

    分子印迹光子晶体技术在食品检测中的应用研究进展

      作者简介:都炳强(1995-),男,山东省潍坊市人,齐鲁工业大学硕士研究生,主要研究方向为食品安全快速检测技术.
    • 1. 齐鲁工业大学(山东省科学院) 食品科学与工程学院, 山东 济南 250353;
    • 2. 山东农业大学 食品科学与工程学院, 山东 泰安 271018
    基金项目:山东省重点研发计划(公益类)项目(2018GNC110029)

    摘要:在简述分子印迹技术、光子晶体技术和分子印迹光子晶体技术的基础上,对分子印迹光子晶体技术在食品有毒有害物质(兽药残留、农药残留、生物毒素、内分泌干扰物、非法添加物)和营养物质检测中的相关应用研究进行综述.指出:分子印迹光子晶体技术结合了分子印迹技术对目标物的高选择性和光子晶体独特的光学性质,作为新型光学传感器适用于食品检测领域;与传统的食品检测方法相比,分子印迹光子晶体技术在保证检测准确性的前提下极大地提高了可视化检测程度和检测效率,缩短了检测时间,更有利于现场检测的发展;然而,分子印迹光子晶体技术也存在合成过程较复杂、需要使用大量有机试剂、检测范围较窄、重复性较差等缺点.未来可就开发环境友好的绿色制备方法、增强光子晶体的稳定性和可控性、降低分子印迹光子晶体的非特异性吸附、开发适用于同时检测多种目标物的高通量检测方法、拓展在微生物检测领域的应用等方面作进一步研究,以优化和发展分子印迹光子晶体技术.

    English Abstract

    参考文献 (46) 相关文章 (20)

    目录

    /

      返回文章