JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

菠萝皮渣纤维素/皂土复合水凝胶的制备及其染料吸附性能

罗钰湲,李辛娅,梁佳翔,刘泓漾,代笛菲,郭小玲,戴宏杰

downloadPDF
罗钰湲, 李辛娅, 梁佳翔, 等. 菠萝皮渣纤维素/皂土复合水凝胶的制备及其染料吸附性能[J]. 轻工学报, 2022, 37(5): 41-49. doi: 10.12187/2022.05.005
引用本文:罗钰湲, 李辛娅, 梁佳翔, 等. 菠萝皮渣纤维素/皂土复合水凝胶的制备及其染料吸附性能[J]. 轻工学报, 2022, 37(5): 41-49.doi:10.12187/2022.05.005
LUO Yuyuan, LI Xinya, LIANG Jiaxiang, et al. Preparation and dye adsorption properties of pineapple peel cellulose/bentonite composite hydrogels[J]. Journal of Light Industry, 2022, 37(5): 41-49. doi: 10.12187/2022.05.005
Citation:LUO Yuyuan, LI Xinya, LIANG Jiaxiang, et al. Preparation and dye adsorption properties of pineapple peel cellulose/bentonite composite hydrogels[J]. Journal of Light Industry, 2022, 37(5): 41-49.doi:10.12187/2022.05.005

菠萝皮渣纤维素/皂土复合水凝胶的制备及其染料吸附性能

    作者简介:罗钰湲(1999-),女,重庆市人,西南大学硕士研究生,主要研究方向为纤维素及蛋白食品胶体。E-mail:854261043@qq.com;
  • 基金项目:重庆市雏鹰计划项目(CY210202)
    国家自然科学基金项目(31901683)
    重庆市自然科学基金项目(cstc2020jcyj-msxmX0087)

  • 中图分类号:TS209

Preparation and dye adsorption properties of pineapple peel cellulose/bentonite composite hydrogels

  • Received Date:2022-03-05

    CLC number:TS209

  • 摘要:以菠萝皮渣纤维素(PPC)为原料,通过碱/尿素体系溶解纤维素并掺入皂土,利用化学交联和原位嵌入磁性Fe 3O 4制备复合水凝胶,并对其结构和染料吸附性能进行研究。结果表明:皂土和Fe 3O 4在复合水凝胶中成功嵌入,皂土有效改善了水凝胶的交联多孔网络结构、热稳定性和溶胀性能。此外,添加皂土有利于提高水凝胶对亚甲基蓝的吸附性能,其饱和吸附量从28.09 mg/g提高到55.87 mg/g;吸附过程符合准二级动力学模型和Langmuir模型,属于化学吸附和单分子层吸附过程。
    1. [1]

      赵大洲.改性香蕉皮对废水中Pb2+的循环吸附性能研究[J].轻工学报,2018,33(4):37-41.

    2. [2]

      王光荣,高世霞,于晓锋,等.改性玉米芯对Zn2+和Cu2+的吸附性能研究[J].轻工学报,2019,34(2):56-62.

    3. [3]

      DAI H J,HUANG Y,ZHANG H,et al.Direct fabrication of hierarchically processed pineapple peel hydrogels for efficient Congo red adsorption[J].Carbohydrate Polymers,2020,230:115599.

    4. [4]

      DAI H J,OU S Y,HUANG Y,et al.Utilization of pineapple peel for production of nanocellulose and film application[J].Cellulose,2018,25(3):1743-1756.

    5. [5]

      DAI H J,HUANG H H.Enhanced swelling and responsive properties of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of carclazyte[J].Journal of Agricultural and Food Chemistry,2017,65(3):565-574.

    6. [6]

      行云逸,黄惠华.菠萝果肉纤维素水凝胶的制备及对益生菌的包埋与缓释分析[J].食品科学,2021,42(1):8-14.

    7. [7]

      关莹,陈阁谷,张冰,等.农林生物质材料基水凝胶的研究进展[J].林产化学与工业,2015,35(2):171-178.

    8. [8]

      HAMIDON T S,ADNAN R,HAAFIZ M K,et al.Cellulose-based beads for the adsorptive removal of wastewater effluents:A review[J].Environmental Chemistry Letters,2022,20(3):1965-2017.

    9. [9]

      DAI H J,HUANG H H.Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue[J].Carbohydrate Polymers,2016,148:1-10.

    10. [10]

      DAI H J,HUANG Y,HUANG H H.Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue[J].Carbohydrate Polymers,2018,185:1-11.

    11. [11]

      宁可心,张婷,王毅,等.黏土类吸附剂去除水中污染物的研究进展[J].化工新型材料,2020,48(8):276-280.

    12. [12]

      SANTOSO S P,KURNIAWAN A,SOETAREDJO F E,et al.Eco-friendly cellulose-bentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture[J].Cellulose,2019,26(5):3339-3358.

    13. [13]

      WANG M Z,LI Y H,CUI M F,et al.Barium alginate as a skeleton coating graphene oxide and bentonite-derived composites:Excellent adsorbent based on predictive design for the enhanced adsorption of methylene blue[J].Journal of Colloid and Interface Science,2022,611:629-643.

    14. [14]

      DAI H J,HUANG Y,ZHANG Y H,et al.Green and facile fabrication of pineapple peel cellulose/magnetic diatomite hydrogels in ionic liquid for methylene blue adsorption[J].Cellulose,2019,26(6):3825-3844.

    15. [15]

      ZHANG H,LUAN Q,TANG H,et al.Removal of methyl orange from aqueous solutions by adsorption on cellulose hydrogel assisted with Fe2O3nanoparticles[J].Cellulose,2016,24(2):903-914.

    16. [16]

      KAMEL S,EL-GENDY A A,HASSAN M A,et al.Carboxymethyl cellulose-hydrogel embedded with modified magnetite nanoparticles and porous carbon:Effective environmental adsorbent[J].Carbohydrate Polymers,2020,242:116402.

    17. [17]

      JIANG M W,NIU N,CHEN L G.A template synthesized strategy on bentonite-doped lignin hydrogel spheres for organic dyes removal[J].Separation and Purification Technology,2022,285:120376.

    18. [18]

      SANTOSO S P,ANGKAWIJAYA A E,BUNDJAJA V,et al.Investigation of the influence of crosslinking activation methods on the physicochemical and Cu (Ⅱ) adsorption characteristics of cellulose hydrogels[J].Journal of Environmental Chemical Engineering,2022,10(1):106971.

    19. [19]

      MOHAMED R R,ABU ELELLA M H,SABAA M W,et al.Synthesis of an efficient adsorbent hydrogel based on biodegradable polymers for removing crystal violet dye from aqueous solution[J].Cellulose,2018,25(11):6513-6529.

    20. [20]

      ALAM M N,ISLAM M S,CHRISTOPHER L P.Sustainable production of cellulose-based hydrogels with superb absorbing potential in physiological saline[J].ACS Omega,2019,4(5):9419-9426.

    21. [21]

      SANTIAGO F,MUCIENTES A E,OSORIO M,et al.Preparation of composites and nanocomposites based on bentonite and poly (sodium acrylate).Effect of amount of bentonite on the swelling behaviour[J].European Polymer Journal,2007,43(1):1-9.

    22. [22]

      DATTA CHAUDHURI S,MANDAL A,DEY A,et al.Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel[J].Applied Clay Science,2020,185:105405.

    23. [23]

      LIN F C,ZHENG J J,GUO W H,et al.Smart cellulose-derived magnetic hydrogel with rapid swelling and deswelling properties for remotely controlled drug release[J].Cellulose,2019,26(11):6861-6877.

    24. [24]

      EMAM H E,SHAHEEN T I.Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release[J].Carbohydrate Polymers,2022,278:118925.

    25. [25]

      BUENO V B,BENTINI R,CATALANI L H,et al.Synthesis and swelling behavior of xanthan-based hydrogels[J].Carbohydrate Polymers,2013,92(2):1091-1099.

    26. [26]

      GHOBASHY M M,ELBARBARY A M,HEGAZY D E.Gamma radiation synthesis of a novel amphiphilic terpolymer hydrogel pH-responsive based chitosan for colon cancer drug delivery[J].Carbohydrate Polymers,2021,263:117975.

    27. [27]

      DAI H J,CHEN Y,MA L,et al.Direct regeneration of hydrogels based on lemon peel and its isolated microcrystalline cellulose:Characterization and application for methylene blue adsorption[J].International Journal of Biological Macromolecules,2021,191:129-138.

    28. [28]

      DABROWSKI A.Adsorption-from theory to practice[J].Advances in Colloid and Interface Science,2001,93(1):135-224.

    29. [29]

      LANGMUIR I.The adsorption of gases on plane surfaces of glass,mica and platinum[J].Journal of the American Chemical Society,1918,40(9):1361-1403.

    30. [30]

      FREUNDLICH H.Over the adsorption in solution[J].Journal of Physical Chemistry,1906,57(4):385-470.

    31. [31]

      SAFAVI-MIRMAHALLEH S,SALAMI-KALAJAHI M,ROGHANI-MAMAQANI H.Effect of surface chemistry and content of nanocrystalline cellulose on removal of methylene blue from wastewater by poly (acrylic acid)/nanocrystalline cellulose nanocomposite hydrogels[J].Cellulose,2019,26(9):5603-5619.

    32. [32]

      CHEN X X,CHEN C,ZHU J.Facile preparation of cellulose-attapulgite nanocomposite hydrogel for dye adsorption[J].Iranian Polymer Journal,2019,28(4):347-359.

    33. [33]

      BEYRANVAND N S,SAMIEY B,TEHRANI A D,et al.Graphene oxide-cellulose nanowhisker hydrogel nanocomposite as a novel adsorbent for methylene blue[J].Journal of Chemical&Engineering Data,2019,64(12):5558-5570.

    1. [1]

      黄改玲,孙迎迎,刘宝强. CoFe2O4/ZnAl-LDO吸附剂的制备及其对染料吸附性能研究. 轻工学报, 2018, 33(3): 8-15.doi: 10.3969/j.issn.2096-1553.2018.03.002

    2. [2]

      郑勇,郑永军,田大勇,侯绍刚. 纤维素催化转化制取2,5-二甲基呋喃的研究. 轻工学报, 2019, 34(3): 28-33.doi: 10.3969/j.issn.2096-1553.2019.03.003

    3. [3]

      杨清香,赵倩倩,李银萍,花瑞,谢守平,陈志军. Fe3O4@SiO2@MIL-101(Cr)制备及对双酚A的吸附性能研究. 轻工学报, 2016, 31(3): 8-13.doi: 10.3969/j.issn.2096-1553.2016.3.002

    4. [4]

      王光荣,高世霞,于晓锋,王珂,巩苗苗. 改性玉米芯对Zn2+和Cu2+的吸附性能研究. 轻工学报, 2019, 34(2): 56-62.doi: 10.3969/j.issn.2096-1553.2019.02.008

    5. [5]

      黄浦,施文健,潘旻旻,彭阳,闻海峰. 交联壳聚糖微球的制备及其对水中芳香族羧基化合物的吸附性能研究. 轻工学报, 2018, 33(6): 8-18.doi: 10.3969/j.issn.2096-1553.2018.06.002

    6. [6]

      张肖静,庞龙,何领好,王明花,陈砚,张治红. 壳聚糖-聚乙烯醇复合水凝胶对水体和土壤中总砷的吸附性能研究. 轻工学报, 2017, 32(1): 58-64.doi: 10.3969/j.issn.2096-1553.2017.1.009

    7. [7]

      赵大洲. 改性香蕉皮对废水中Pb2+的循环吸附性能研究. 轻工学报, 2018, 33(4): 37-41.doi: 10.3969/j.issn.2096-1553.2018.04.005

    8. [8]

      黄改玲,王东,蒋玲,周婧,赵玉成. Mg2Al-LS-LDH复合材料的制备及吸附性能研究. 轻工学报, 2015, 30(5-6): 12-16.doi: 10.3969/j.issn.2095-476X.2015.5/6.003

    9. [9]

      刘瑞雪,陈纪超,李迎博,周腾,王亚玲. 明胶/聚甲基丙烯酸复合水凝胶的制备及其性能研究. 轻工学报, 2020, 35(6): 50-59.doi: 10.12187/2020.06.007

    10. [10]

      刘瑞雪,李迎博,陈纪超. 基于pH调节的CMCS-PMMS/PAAm复合水凝胶的构筑与性能研究. 轻工学报, 2021, 36(2): 64-73.doi: 10.12187/2021.02.009

    11. [11]

      陈志军,汤凯,杨清香,王雪兆,朱海燕,魏永豪. L-半胱氨酸修饰的Au/Fe3O4磁性复合粒子的制备及其对牛血清蛋白的吸附性能. 轻工学报, 2013, 28(6): 39-43.doi: 10.3969/j.issn.2095-476X.2013.06.010

    12. [12]

      郑勇,彭聪虎,郑永军,侯绍刚. 半纤维素在离子液体中的溶解和再生过程研究. 轻工学报, 2016, 31(2): 15-20.doi: 10.3969/j.issn.2096-1553.2016.2.002

    13. [13]

      刘瑞雪,周腾,樊晓敏,李云秋,冯皓泽. 明胶基复合水凝胶研究进展. 轻工学报, 2018, 33(6): 42-54,81.doi: 10.3969/j.issn.2096-1553.2018.06.006

    14. [14]

      邢胜利,宋丽丽,张志平,魏涛,马歌丽,邢进,黎园,杨旭. 高产纤维素酶的里氏木霉液态发酵培养基条件优化. 轻工学报, 2022, 37(1): 20-25.doi: 10.12187/2022.01.003

    15. [15]

      胡仙妹,张晨,杨雪鹏,张展,尹献忠. 不同干燥方式对烟用细菌纤维素结构及挥发性香味成分的影响. 轻工学报, 2023, 38(4): 77-83.doi: 10.12187/2023.04.010

    16. [16]

      樊凯奇,贾彩敬,赵帅,岳凡,韩光鲁,王利霞,尹志刚,宋健. 高弹性双网络水凝胶的制备及其性能研究. 轻工学报, 2017, 32(6): 35-42.doi: 10.3969/j.issn.2096-1553.2017.6.005

    17. [17]

      刘瑞雪,李迎博,李义梦,周腾. 壳聚糖-柠檬酸/聚丙烯酰胺双网络水凝胶的构筑与性能研究. 轻工学报, 2020, 35(1): 63-71.doi: 10.12187/2020.01.008

    18. [18]

      陈志军,郝营,杨清香,张翔,齐连怀,汤凯,朱海燕,王丹. Zn2+离子印迹Fe3O4-壳聚糖纳米粒子的制备及对Zn2+吸附性能的研究. 轻工学报, 2014, 29(1): 74-78.doi: 10.3969/j.issn.2095-476X.2014.01.015

    19. [19]

      陈志军,朱海燕,郝营,尹甲兴,王雪兆,齐连怀,孙旭亮,魏永豪. Fe3O4-壳聚糖磁性微球的制备及对Cu2+的吸附性能. 轻工学报, 2012, 27(2): 1-4,21.doi: 10.3969/j.issn.1004-1478.2012.02.001

    20. [20]

      鲁锋,牛塬塬,谷玉娜,韩秀丽. 响应面法优化玉米芯基活性炭对培氟沙星的吸附性能研究. 轻工学报, 2022, 37(5): 105-112.doi: 10.12187/2022.05.013

  • 加载中
计量
  • PDF下载量:20
  • 文章访问数:827
  • 引证文献数:0
文章相关
  • 收稿日期:2022-03-05
    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    罗钰湲, 李辛娅, 梁佳翔, 等. 菠萝皮渣纤维素/皂土复合水凝胶的制备及其染料吸附性能[J]. 轻工学报, 2022, 37(5): 41-49. doi: 10.12187/2022.05.005
    引用本文:罗钰湲, 李辛娅, 梁佳翔, 等. 菠萝皮渣纤维素/皂土复合水凝胶的制备及其染料吸附性能[J]. 轻工学报, 2022, 37(5): 41-49.doi:10.12187/2022.05.005
    LUO Yuyuan, LI Xinya, LIANG Jiaxiang, et al. Preparation and dye adsorption properties of pineapple peel cellulose/bentonite composite hydrogels[J]. Journal of Light Industry, 2022, 37(5): 41-49. doi: 10.12187/2022.05.005
    Citation:LUO Yuyuan, LI Xinya, LIANG Jiaxiang, et al. Preparation and dye adsorption properties of pineapple peel cellulose/bentonite composite hydrogels[J]. Journal of Light Industry, 2022, 37(5): 41-49.doi:10.12187/2022.05.005

    菠萝皮渣纤维素/皂土复合水凝胶的制备及其染料吸附性能

      作者简介:罗钰湲(1999-),女,重庆市人,西南大学硕士研究生,主要研究方向为纤维素及蛋白食品胶体。E-mail:854261043@qq.com
    • 1. 西南大学 食品科学学院, 重庆 400715;
    • 2. 重庆市朝阳中学, 重庆 400700
    基金项目:重庆市雏鹰计划项目(CY210202)国家自然科学基金项目(31901683)重庆市自然科学基金项目(cstc2020jcyj-msxmX0087)

    摘要:以菠萝皮渣纤维素(PPC)为原料,通过碱/尿素体系溶解纤维素并掺入皂土,利用化学交联和原位嵌入磁性Fe3O4制备复合水凝胶,并对其结构和染料吸附性能进行研究。结果表明:皂土和Fe3O4在复合水凝胶中成功嵌入,皂土有效改善了水凝胶的交联多孔网络结构、热稳定性和溶胀性能。此外,添加皂土有利于提高水凝胶对亚甲基蓝的吸附性能,其饱和吸附量从28.09 mg/g提高到55.87 mg/g;吸附过程符合准二级动力学模型和Langmuir模型,属于化学吸附和单分子层吸附过程。

    English Abstract

    参考文献 (33) 相关文章 (20)

    目录

    /

      返回文章