JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

冰岛刺参生物活性成分及其功能活性研究进展

赵祥忠,高云龙,徐梦豪,朱纪海

downloadPDF
赵祥忠, 高云龙, 徐梦豪, 等. 冰岛刺参生物活性成分及其功能活性研究进展[J]. 轻工学报, 2022, 37(6): 11-17. doi: 10.12187/2022.06.002
引用本文:赵祥忠, 高云龙, 徐梦豪, 等. 冰岛刺参生物活性成分及其功能活性研究进展[J]. 轻工学报, 2022, 37(6): 11-17.doi:10.12187/2022.06.002
ZHAO Xiangzhong, GAO Yunlong, XU Menghao and et al. Research progress on bioactive components and their functional activities of Cucumaria frondosa[J]. Journal of Light Industry, 2022, 37(6): 11-17. doi: 10.12187/2022.06.002
Citation:ZHAO Xiangzhong, GAO Yunlong, XU Menghao and et al. Research progress on bioactive components and their functional activities of Cucumaria frondosa[J]. Journal of Light Industry, 2022, 37(6): 11-17.doi:10.12187/2022.06.002

冰岛刺参生物活性成分及其功能活性研究进展

    作者简介:赵祥忠(1969—),男,山东省潍坊市人,齐鲁工业大学副教授,主要研究方向为海洋食品与生物技术。E-mail:13506416163@163.com;
  • 基金项目:山东省自然科学基金项目(ZR2020QC221)

  • 中图分类号:TS254.5

Research progress on bioactive components and their functional activities ofCucumaria frondosa

  • Received Date:2021-03-30
    Accepted Date:2022-09-14

    CLC number:TS254.5

  • 摘要:对冰岛刺参生物活性成分的组成、功能活性等研究进行综述,指出,冰岛刺参含有脂类、多糖类、皂苷类、多肽及蛋白质类等多种生物活性成分,具有抗肿瘤、免疫调节、抗炎、抗衰老等功能活性,在功能性食品、营养保健品等方面具有潜在用途。未来可创新冰岛刺参深加工技术,加强冰岛刺参活性成分的功能活性、药理效力研究,提高内脏等副产物的附加值,以期为冰岛刺参的高值化利用和全产业链开发提供参考。
    1. [1]

      曹建,贾子才,丛培旭,等.冰岛刺参和南非花刺参脑苷脂分子种的比较[J].中国海洋大学学报(自然科学版),2016,46(9):38-44.

    2. [2]

      徐梦豪,侯召华,林荣芳,等.冰岛刺参抗癌物质Frondoside A的研究进展[J].特产研究,2020,42(5):71-77.

    3. [3]

      ABUZAYTOUN R,BUDGE S,HANSEN L T,et al.Modification of the ferrous Oxidation-Xylenol orange method for determination of peroxide value in highly pigmented sea cucumber viscera lipid[J].Journal of the American Oil Chemists’ Society,2020,97(5):509-516.

    4. [4]

      XU H,WANG F,WANG J F,et al.The WNT/β-catenin pathway is involved in the anti-adipogenic activity of cerebrosides from the sea cucumberCucumaria frondosa[J].Food & Function,2015,6(7):2396-2404.

    5. [5]

      JIA Z C,SONG Y,TAO S Y,et al.Structure of sphingolipids from sea cucumberCucumaria frondosaand structure-specific cytotoxicity against human HepG2 cells[J].Lipids,2016,51(3):321-334.

    6. [6]

      TIAN Y Y,HU S W,XU H,et al.Long-chain bases fromCucumaria frondosainhibit adipogenesis and regulate lipid metabolism in 3T3-L1 adipocytes[J].Food Science & Biotechnology,2016,25(6):1753-1760.

    7. [7]

      朱启源.两种海参多糖组分的制备及其改善大鼠2型糖尿病作用研究[D].广州:华南理工大学,2020.

    8. [8]

      SAJWANI F.Frondoside A is a potential anticancer agent from sea cucumbers[J].Journal of Cancer Research & Therapeutics,2019,15(5):953-960.

    9. [9]

      THARINDU R L S,DEEPIKA D,FEREIDOON S.Antioxidant potential and physicochemical properties of protein hydrolysates from body parts of North Atlantic sea cucumber (Cucumaria frondosa)[J].Food Production,Processing and Nutrition,2021,3(1):3.

    10. [10]

      ATTOUB S,ARAFAT K,BRACKE M,et al.Frondoside a suppressive effects on lung cancer survival,tumor growth,angiogenesis,invasion,and metastasis[J].PLoS ONE,2013,8(1):e53087.

    11. [11]

      杨坤.叶瓜参提取物的酶法制备及其抗衰老活性研究[D].广州:华南理工大学,2018.

    12. [12]

      ZHANG L Y,WANG D,WEN M,et al.Rapid modulation of lipid metabolism in C57BL/6J mice induced by eicosapentaenoic acid-enriched phospholipid fromCucumaria frondosa[J].Journal of Functional Foods,2017,28:28-35.

    13. [13]

      LIU X X,HAO J J,SHAN X D,et al.Antithrombotic activities of fucosylated chondroitin sulfates and their depolymerized fragments from two sea cucumbers[J].Carbohydrate Polymers,2016,152:343-350.

    14. [14]

      DING L,ZHANG T T,CHE H X,et al.Saponins of sea cucumber attenuate atherosclerosis in ApoE/mice via lipid-lowering and anti-inflammatory properties[J].Journal of Functional Foods,2018,48:490-497.

    15. [15]

      HU S W,WANG J H,WANG J F,et al.Long-chain bases from sea cucumber inhibits renal fibrosis and apoptosis in type 2 diabetic mice[J].Journal of Functional Foods,2018,40:760-768.

    16. [16]

      赵芹,王静凤,薛勇,等.3种海参的主要活性成分和免疫调节作用的比较研究[J].中国水产科学,2008,15(1):154-159.

    17. [17]

      ZHONG Y,KHAN M A,SHAHIDI F.Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa)[J].Journal of Agricultural and Food Chemistry,2007,55(4):1188-1192.

    18. [18]

      SONG Z Y,LI H L,WEN J,et al.Consumers’ attention on identification,nutritional compounds,and safety in heavy metals of Canadian sea cucumber in Chinese food market[J].Food Science & Nutrition,2020,8(11):5962-5975.

    19. [19]

      USTVUZHANINA N E,BILAN M I,DMITRENOK A S,et al.The structure of a fucosylated chondroitin sulfate from the sea cucumberCucumaria frondosa[J].Carbohydrate Polymers,2017,165:7-12.

    20. [20]

      HU S W,LI S J,SONG W D,et al.Fucoidan fromCucumaria frondosainhibits pancreatic islets apoptosis through mitochondrial signaling pathway in insulin resistant mice[J].Food Science and Technology Research,2016,22(4):507-517.

    21. [21]

      HOSSAIN A,DAVE D,SHAHIDI F.Northern sea cucumber (Cucumaria frondosa):A potential candidate for functional food,nutraceutical,and pharmaceutical sector[J].Marine Drugs,2020,18(5):274.

    22. [22]

      钟静诗,张健,刘芳,等.海参皂苷生物活性及其分子机制研究进展[J].食品与机械,2021,37(3):180-186
      ,194.

    23. [23]

      董婧媛.海参皂苷的提取工艺及功能研究[D].天津:天津科技大学,2020.

    24. [24]

      MOJID M M A,JAE S H,AMINUR R M,et al.Sea cucumber glycosides:Chemical structures,producing species and important biological properties[J].Marine Drugs,2017,15(10):317.

    25. [25]

      XIONG Q P,SONG Z Y,HU W H,et al.Methods of extraction,separation,purification,structural characterization for polysaccharides from aquatic animals and their major pharmacological activities[J].Critical Reviews in Food Science and Nutrition,2020,60(1):48-63.

    26. [26]

      CHEN F,LIN L Z,ZHAO M M,et al.Modification ofCucumaria frondosahydrolysate through maillard reaction for sea cucumber peptide based-beverage[J].LWT-Food Science and Technology,2021,136(5):110329.

    27. [27]

      赵芹,林栋,刘海梅.冰岛刺参胶原蛋白多肽对PC12细胞氧化损伤的保护作用[J].食品工业科技,2016,37(18):354-358.

    28. [28]

      孙姿姿,徐莲,徐先锋,等.叶瓜参多肽对S180荷瘤小鼠抑瘤作用的研究[J].食品科技,2016,41(4):77-81.

    29. [29]

      徐先锋,徐莲,孙姿姿,等.冰岛刺参多肽对小鼠免疫调节功能的影响[J].食品科技,2016,41(6):67-71.

    30. [30]

      LIN L Z,YANG K,ZHENG L,et al.Anti-aging effect of sea cucumber (Cucumaria frondosa) hydrolysate on fruit flies and D-galactose-induced aging mice[J].Journal of Functional Foods,2018,47:11-18.

    31. [31]

      ZHONG Y,KHAN M A,SHAHIDI F.Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa) [J].Journal of Agricultural and Food Chemistiy,2007,1188-1192.

    32. [32]

      MAMELONA J,PELLETIER É,LEGAULT J,et al.Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber,Cucumaria frondosa[J].Food Chemistry,2007,104:1040-1047.

    33. [33]

      NADIA A M,RABAH I,AADERRAHIM N,et al.Frondoside A inhibits human breast cancer cell survival,migration,invasion and the growth of breast tumor xenografts [J].European Journal of Pharmacology,2011,668:25-34.

    34. [34]

      DU L,YANG Y H,WANG Y M,et al.Antitumour activity of EPA-enriched phospholipids liposomes against S180 ascitic tumour-bearing mice[J].Journal of Functional Foods,2015,19:970-982.

    35. [35]

      STEFANIAK-VIDARSSON M M,KALE V A,MARTEINSDOTTIR G,et al.Bioactive effect of sulphated polysaccharides derived from orange-footed sea cucumber (Cucumaria frondosa) toward THP-1 macrophages[J].Bioactive Carbohydrates & Dietary Fibre,2017,12:14-19.

    36. [36]

      AMININ D L,AGAFONOVA I G,KALININ V I,et al.Immunomodulatory properties of frondoside A,a major triterpene glycoside from the North Atlantic commercially harvested sea cucumberCucumaria frondosa[J].Journal of Medicinal Food,2008,11(3):443-453.

    37. [37]

      胡世伟,王静凤,徐慧,等.冰岛刺参岩藻聚糖硫酸酯对胰岛素抵抗小鼠炎症改善作用的研究[J].中国海洋药物,2015,168(6):49-56.

    38. [38]

      SANDEEP S,SANJANA C,SAEEDA A,et al.Frondanol,a nutraceutical extract fromCucumaria frondosa,attenuates colonic inflammation in a DSS-induced colitis model in mice[J].Marine Drugs,2018,16(5):148.

    39. [39]

      胡明曦,张栩,陈畅.细胞氧化还原调控与衰老[J].生物化学与生物物理进展,2014,41(3):288-294.

    40. [40]

      CHEIGNON C,TOMAS M,BONNEFONT-ROUSSELOT D,et al.Oxidative stress and the amyloid beta peptide in Alzheimer’s disease[J].Redox Biol,2018,14:450-464.

    41. [41]

      WANG C C,WANG D,ZHANG T T,et al.A comparative study about EPA-PL and EPA-EE on ameliorating behavioral deficits in MPTP-induced mice with Parkinson’s disease by suppressing oxidative stress and apoptosis[J].Journal of Functional Foods,2018,50:8-17.

    42. [42]

      荣怡,董笑晨,张国鹏,等.北京居民对于高血压、高血脂和高血糖的认知与消费现状研究[J].现代食品,2018(24):182-189.

    43. [43]

      HU S W,XU L L,SHI D,et al.Eicosapentaenoic acid-enriched phosphatidylcholine isolated fromCucumaria frondosaexhibits anti-hyperglycemic effects via activating phosphoinositide 3-kinase/protein kinase B signal pathway[J].Journal of Bioscience & Bioengineering,2014,117(4):457-463.

    44. [44]

      ZHU Q Y,LIN L Z,ZHAO M M.Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats:New prospects for sea cucumber polysaccharide based-hypoglycemic functional food[J].International Journal of Biological Macromolecules,2020,159:34-45.

    45. [45]

      WANG Y M,WANG J F,ZHAO Y L,et al.Fucoidan from sea cucumberCucumaria frondosaexhibits anti-hyperglycemic effects in insulin resistant mice via activating the PI3K/PKB pathway and GLUT4[J].Journal of Bioence & Bioengineering,2016,121(1):36-42.

    46. [46]

      DUAN X, ZHANG M, MUJUMDAR A S.Study on a combination drying technique of sea cucumber[J].Drying Technology,2007,25(12):2011-2019.

    1. [1]

      董吉林,李鹏冲,景新俊,申瑞玲. 全麦面粉营养特征、生理功能及产品开发现状述评. 轻工学报, 2018, 33(3): 45-50.doi: 10.3969/j.issn.2096-1553.2018.03.006

    2. [2]

      马骥,常宇,付磊,冯洪涛,梅涌,毛多斌. 功能性香精添加前后烟丝挥发性成分变化及对感官品质的影响. 轻工学报, 2012, 27(2): 31-36.doi: 10.3969/j.issn.1004-1478.2012.02.008

    3. [3]

      宋丽丽,霍姗浩,胡冉冉,赵鑫淼,朱钰琪,杨旭,张志平,魏涛. 复合乳酸菌固态发酵对脱脂米糠理化性质、生物活性和功能特性的影响. 轻工学报, 2024, 39(3): 21-28.doi: 10.12187/2024.03.003

    4. [4]

      宋丽丽,李科娜,杨旭,张志平,马歌丽. 小黄姜精油提取工艺优化、成分分析及其生物活性研究. 轻工学报, 2020, 35(5): 7-15.doi: 10.12187/2020.05.002

    5. [5]

      许春平,杨琛琛. 调节血清胆固醇的保健功能食品研究综述. 轻工学报, 2014, 29(1): 44-47.doi: 10.3969/j.issn.2095-476X.2014.01.008

    6. [6]

      田瑞杰,张勇,冯大鸿,王康丽,迟雷,沈祥坤,胡晓龙,何培新. 基于宏转录组学的浓香型白酒酒醅活性微生物群落空间异质性研究. 轻工学报, 2022, 37(1): 1-11.doi: 10.12187/2022.01.001

    7. [7]

      贾云,胡婉蓉,吕晋雄,张倩颖,王跃,罗诚,刘元法,李东亮. 雪茄烟叶发酵过程中微生物群落及功能微生物分析. 轻工学报, 2023, 38(1): 71-78,89.doi: 10.12187/2023.01.009

    8. [8]

      . 城市供水管网抗震功能可靠性分析. 轻工学报, 2012, 27(1): 49-52.doi: 10.3969/j.issn.1004-1478.2012.01.013

    9. [9]

      赵甜甜,张国治,王赵改,蒋鹏飞. 两种市售香椿茶主要活性成分、抗氧化活性及挥发性成分的对比分析. 轻工学报, 2023, 38(3): 35-45.doi: 10.12187/2023.03.005

    10. [10]

      路福平,杨霁菡,王永帅,青快,王洪彬. 蛋白酶水解中药渣制备生物活性肽工艺探讨. 轻工学报, 2016, 31(1): 12-16.doi: 10.3969/j.issn.2096-1553.2016.1.003

    11. [11]

      牛玉清,赵岩,于鑫淼,宋丽军. 新疆管花肉苁蓉生物活性物质及产地差异分析. 轻工学报, 2022, 37(6): 25-33.doi: 10.12187/2022.06.004

    12. [12]

      汪雪莲,冯慧祥,薛世华,谢譞,刘鹏展. 绿茶茶末多酚的提取、鉴定及其生物活性研究. 轻工学报, 2022, 37(6): 58-67.doi: 10.12187/2022.06.008

    13. [13]

      李石头,潘凡达,黄晓玉,闫茗熠,田雨农,廖付,王辉,吴继忠. 基于宏基因组学的不同陈化时间烟草源功能微生物筛选. 轻工学报, 2023, 38(1): 101-109.doi: 10.12187/2023.01.012

    14. [14]

      杨鹏飞,张增辉,何春雨,杨靖,贾春晓,毛多斌. 基于分子感官科学的烟用香精关键香气活性成分分析. 轻工学报, 2021, 36(2): 34-42.doi: 10.12187/2021.02.005

    15. [15]

      徐秀娟,洪祖灿,柴国璧,陈群,杨春强,操晓亮,胡军,张峰. 基于香气活性值的烟草提取物成分分析及感官作用评价. 轻工学报, 2023, 38(2): 63-71.doi: 10.12187/2023.02.008

    16. [16]

      胡超,吴东川,务文涛,吕阳波,宋凌勇,潘海洋,李志华,张峻松. 活性炭滤嘴对卷烟主流烟气中香味成分截留规律的影响. 轻工学报, 2022, 37(4): 73-80.doi: 10.12187/2022.04.010

    17. [17]

      钮劲涛,金宝丹,周萍,牛佳慧,张局,张钟方,陶泓帆,马志刚,代菁雯,李诺楠. CaO2对城市污水处理中剩余污泥厌氧发酵产酸性能与生物酶活性的影响. 轻工学报, 2019, 34(4): 64-73,108.doi: 10.3969/j.issn.2096-1553.2019.04.010

    18. [18]

      秦于思,程明,韦海涛,高兴明,范小雪,王存芳. 高F值寡肽的功能特性研究进展. 轻工学报, 2021, 36(3): 28-35.doi: 10.12187/2021.03.004

    19. [19]

      胡光武,张超钦,邬可可. 地址语义驱动的服务功能链架构方案研究. 轻工学报, 2020, 35(5): 71-79.doi: 10.12187/2020.05.010

    20. [20]

      吴澄宇,李迎秋. 韭花精油主成分对单增李斯特氏菌的抑菌活性和抑菌机理. 轻工学报, 2024, 39(2): 36-42.doi: 10.12187/2024.02.005

  • 加载中
计量
  • PDF下载量:29
  • 文章访问数:1680
  • 引证文献数:0
文章相关
  • 收稿日期:2021-03-30
  • 修回日期:2022-09-14
    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    赵祥忠, 高云龙, 徐梦豪, 等. 冰岛刺参生物活性成分及其功能活性研究进展[J]. 轻工学报, 2022, 37(6): 11-17. doi: 10.12187/2022.06.002
    引用本文:赵祥忠, 高云龙, 徐梦豪, 等. 冰岛刺参生物活性成分及其功能活性研究进展[J]. 轻工学报, 2022, 37(6): 11-17.doi:10.12187/2022.06.002
    ZHAO Xiangzhong, GAO Yunlong, XU Menghao and et al. Research progress on bioactive components and their functional activities of Cucumaria frondosa[J]. Journal of Light Industry, 2022, 37(6): 11-17. doi: 10.12187/2022.06.002
    Citation:ZHAO Xiangzhong, GAO Yunlong, XU Menghao and et al. Research progress on bioactive components and their functional activities of Cucumaria frondosa[J]. Journal of Light Industry, 2022, 37(6): 11-17.doi:10.12187/2022.06.002

    冰岛刺参生物活性成分及其功能活性研究进展

      作者简介:赵祥忠(1969—),男,山东省潍坊市人,齐鲁工业大学副教授,主要研究方向为海洋食品与生物技术。E-mail:13506416163@163.com
    • 1. 齐鲁工业大学(山东省科学院) 食品科学与工程学院, 山东 济南 250353;
    • 2. 山东中硕海洋科技有限公司, 山东 日照 276800
    基金项目:山东省自然科学基金项目(ZR2020QC221)

    摘要:对冰岛刺参生物活性成分的组成、功能活性等研究进行综述,指出,冰岛刺参含有脂类、多糖类、皂苷类、多肽及蛋白质类等多种生物活性成分,具有抗肿瘤、免疫调节、抗炎、抗衰老等功能活性,在功能性食品、营养保健品等方面具有潜在用途。未来可创新冰岛刺参深加工技术,加强冰岛刺参活性成分的功能活性、药理效力研究,提高内脏等副产物的附加值,以期为冰岛刺参的高值化利用和全产业链开发提供参考。

    English Abstract

    参考文献 (46) 相关文章 (20)

    目录

    /

      返回文章