JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

分子模拟技术在食品组分互作体系及安全领域的应用研究进展

傅亮,吕金羚,张锦,庄国栋,朱勇,陈永生

downloadPDF
傅亮, 吕金羚, 张锦, 等. 分子模拟技术在食品组分互作体系及安全领域的应用研究进展[J]. 轻工学报, 2023, 38(2): 1-13. doi: 10.12187/2023.02.001
引用本文:傅亮, 吕金羚, 张锦, 等. 分子模拟技术在食品组分互作体系及安全领域的应用研究进展[J]. 轻工学报, 2023, 38(2): 1-13.doi:10.12187/2023.02.001
FU Liang, LYU Jinling, ZHANG Jin, et al. Research progress on the application of molecular simulation technology in food component interaction system and safety[J]. Journal of Light Industry, 2023, 38(2): 1-13. doi: 10.12187/2023.02.001
Citation:FU Liang, LYU Jinling, ZHANG Jin, et al. Research progress on the application of molecular simulation technology in food component interaction system and safety[J]. Journal of Light Industry, 2023, 38(2): 1-13.doi:10.12187/2023.02.001

分子模拟技术在食品组分互作体系及安全领域的应用研究进展

    作者简介:傅亮(1968-),男,湖南省益阳市人,暨南大学副教授,博士,主要研究方向为食品科学。E-mail:tfuliang@jnu.edu.cn;
  • 基金项目:国家自然科学基金青年基金项目(31901676,32001352);广州市基础与应用基础研究项目(202102080221);贵州省科技计划项目[黔科合支撑(2020)1Y171号];阳西县级科技项目(21011)

  • 中图分类号:TS201.2

Research progress on the application of molecular simulation technology in food component interaction system and safety

  • Received Date:2022-05-23

    CLC number:TS201.2

  • 摘要:在食品加工和储存过程中,组分分子之间会发生复杂的相互作用,传统的实验方法难以从分子层面对影响食品营养价值和安全性的互作机制进行清晰直观的阐释。分子模拟技术基于分子模型研究分子行为以预测或解释宏观实验现象,具有客观、高效、成本低廉等优点,是连接微观与宏观尺度的重要桥梁。对该技术在食品组分互作体系、食品安全领域中的应用研究进展进行了综述,认为:分子模拟技术能够从原子/分子层面揭示食品营养物质分子间的互作机制、食品污染物的毒理机制及抑菌机理,表征分子构象的动态变化、电子转移、共价键断裂和重建等可视化数据,为改善食品的加工工艺和储存条件、提高食品的安全性等生产实践提供指导性建议。然而,近年来该技术在应用过程中存在大多数互作体系的研究相对独立、高反应性的分子在模拟过程中被认为是纯分离物或惰性物质等问题,今后应深入研究并逐步完善环境诱导下食品组分分子的构象变化、功能特性与食品品质三者之间的联系,以期为分子模拟技术在食品不同领域的实际应用提供参考。
    1. [1]

      CHEN G,HUANG K,MIAO M,et al.Molecular dynamics simulation for mechanism elucidation of food processing and safety: State of the art[J].Comprehensive Reviews in Food Science and Food Safety,2019,18(1):243-263.

    2. [2]

      CHEUNG D L.Conformations of myoglobin-derived peptides at the air-water interface[J].Langmuir,2016,32(18):4405-4414.

    3. [3]

      吴秋月.基于分子模拟黄曲霉毒素特异性多肽的筛选及传感器研究[D].天津:天津科技大学,2019.

    4. [4]

      NIAN B B,XU Y J,LIU Y F.Molecular dynamics simulation for mechanism revelation of the safety and nutrition of lipids and derivatives in food: State of the art[J].Food Research International,2021,145:110399.

    5. [5]

      TAO X,HUANG Y K,WANG C,et al.Recent developments in molecular docking technology applied in food science:A review[J].International Journal of Food Science & Technology,2020,55(1):33-45.

    6. [6]

      LAM R S H,NICKERSON M T.Food proteins:A review on their emulsifying properties using a structure-function approach[J].Food Chemistry,2013,141(2):975-984.

    7. [7]

      RICHON A B.An early history of the molecular modeling industry[J].Drug Discovery Today,2008,13(15/16):659-664.

    8. [8]

      FIELD M J.Technical advances in molecular simulation since the 1980s[J].Archives of Biochemistry and Biophysics,2015,582:3-9.

    9. [9]

      韩超,李成帅.分子模拟在膜分离方面的应用研究进展[J].山东化工,2021,50(15):71-72.

    10. [10]

      王娟娟,李海平.分子模拟技术在食品分子互作中的应用研究进展[J].食品与发酵工业,2022,48(14):292-302.

    11. [11]

      付媛,张美莉,张宇,等.基于量子化学计算分析裸燕麦源两种活性肽抗氧化机理的研究[J].食品科学,2022,43(23):106-112.

    12. [12]

      HUANG Z J,ZENG Y H,SUN Q Y,et al.Insights into the mechanism of flavor compound changes in strong flavor baijiu during storage by using the density functional theory and molecular dynamics simulation[J].Food Chemistry,2022,373:131522.

    13. [13]

      CHENG L L,ZHU X,HAMAKER B R,et al.Complexation process of amylose under different concentrations of linoleic acid using molecular dynamics simulation[J].Carbohydrate Polymers,2019,216:157-166.

    14. [14]

      BELLA G,ROTONDO A.Theoretical prediction of C-13 NMR spectrum of mixed triglycerides by mean of GIAO calculations to improve vegetable oils analysis[J].Chemistry and Physics of Lipids,2020,232:104973.

    15. [15]

      ZAHRA E,VAHIDEH M,BEHROUZ T.Probabilistic health risk assessment based on Monte Carlo simulation for pesticide residues in date fruits of Iran[J].Environmental Science and Pollution Research,2021,28(31):42037-42050.

    16. [16]

      SISWANTORO J,PRABUWONO A S,ABDULLAH A,et al.Monte carlo method with heuristic adjustment for irregularly shaped food product volume measurement[J].The Scientific World Journal,2014,2014:683048.

    17. [17]

      ABE H,KOYAMA K,KAWAMURA S,et al.Stochastic modeling of variability in survival behavior of Bacillus simplex spore population during isothermal inactivation at the single cell level using a Monte Carlo simulation[J].Food Microbiology,2019,82:436-444.

    18. [18]

      韩芬霞,范新景,耿升,等.异甘草素抑制α-葡萄糖苷酶的分子机制[J].食品科学,2019,40(15):37-42.

    19. [19]

      ROY S,NARANG B K,GUPTA M K,et al.Molecular docking studies on isocytosine analogues as xanthine oxidase inhibitors[J].Drug Research,2018,68(7):395-402.

    20. [20]

      JANMEJAYA R,CHANDRA S B,SUCHISMITAS,et al.Spectroscopic and computational insight into the conformational dynamics of hemoglobin in the presence of vitamin B12[J].International Journal of Biological Macromolecules,2021,189:306-315.

    21. [21]

      李泽业.分子动力学模拟成骨不全症中胶原蛋白的生物力学响应[D].天津:天津理工大学,2022.

    22. [22]

      杨雪清,刘吉元,张雅林.分子模拟技术及其在苹果蠹蛾代谢杀虫剂分子机制研究中的应用进展[J].生物安全学报,2015,24(4):265-273.

    23. [23]

      ZHANG Z Q,YAN K F,ZHANG J L.ReaxFF molecular dynamics simulations of the initial pyrolysis mechanism of unsaturated triglyceride[J].Journal of Molecular Modeling,2014,20(3):2127.

    24. [24]

      KOROLEVA M,TOKAREV A,YURTOV E.Modeling droplet aggregation and percolation clustering in emulsions[J]. Arabian Journal of Chemistry,2019,12(8):4458-4465.

    25. [25]

      FENG T,HU Z S,WANG K,et al.Emulsion-based delivery systems for curcumin:Encapsulation and interaction mechanism between debranched starch and curcumin[J].International Journal of Biological Macromolecules,2020,161:746-754.

    26. [26]

      SANG S Y,CHEN Y T,ZHU X,et al.Effect of egg yolk lipids on structure and properties of wheat starch in steamed bread[J].Journal of Cereal Science,2019,86:77-85.

    27. [27]

      RUSSELL C,ZOMPRA A A,SPYROULIAS G A,et al.The heat stability of Rhamnolipid containing egg-protein stabilised oil-in-water emulsions[J].Food Hydrocolloids,2021,116:106632.

    28. [28]

      熊强,丁立新,姜晓燕,等.X射线测定蛋白质结构的技术进展与研究现状[J].癌变·畸变·突变,2019,31(1):82-85.

    29. [29]

      LYU Q Q,WANG S,XU W H,et al.Structural insights into the substrate-binding mechanism for a novel chitosanase[J].Biochemical Journal,2014,461(2):335-345.

    30. [30]

      YU X X,LIANG W Y,YIN J Y,et al.Combining experimental techniques with molecular dynamics to investigate the impact of different enzymatic hydrolysis ofβ-lactoglobulin on the antigenicity reduction[J].Food Chemistry,2021,350:129139.

    31. [31]

      ZHANG J,ZHAO N,XU J N,et al.Exploring the catalytic mechanism of a novelβ-glucosidase BGL0224 from Oenococcus oeni SD-2a:Kinetics, spectroscopic and molecular simulation[J].Enzyme and Microbial Technology,2021,148:109814.

    32. [32]

      ZHAO L Y,CHEN Z Y,LIN S,et al.In vitrobiosynthesis of isobutyraldehyde through the establishment of a one-step self-assembly-based immobilization strategy[J].Journal of Agricultural and Food Chemistry,2021,69(48):14609-14619.

    33. [33]

      XIE F,ZHANG W,GONG S X,et al.Investigating lignin from Canna edulis ker residues induced activation ofα-amylase: Kinetics,interaction, and molecular docking[J].Food Chemistry,2019,271:62-69.

    34. [34]

      FENG Y X,WANG Z C,CHEN J X,et al.Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (Juglans regiaL.) meal[J].Food Chemistry,2021,353:129471.

    35. [35]

      SCHESTKOWA H,WOLLBORN T,WESTPHAL A,et al.Conformational state and charge determine the interfacial stabilization process of beta-lactoglobulin at preoccupied interfaces[J].Journal of Colloid and Interface Science,2018,536:300-309.

    36. [36]

      ZHOU P,YANG C,REN Y R,et al.What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach[J].Food Chemistry, 2013,141(3):2967-2973.

    37. [37]

      SALMASO V,MORO S.Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process:An overview[J].Frontiers in Pharmacology,2018,9:923.

    38. [38]

      WU J H,RONG Y Z,WANG Z W,et al.Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction[J].Food Chemistry,2015,174:621-629.

    39. [39]

      PANDEY P,MALLAJOSYULA S S.Elucidating the role of key structural motifs in antifreeze glycoproteins[J]. Physical Chemistry Chemical Physics,2019,21(7):3903-3917.

    40. [40]

      DARMAWAN K K,KARAGIANNIS T C,HUGHES J G,et al.In silico modelling of apo-lactoferrin under simulated gastric conditions:Structural dynamics, binding withβ-lactoglobulin andα-lactalbumin,and functional implications[J].LWT-Food Science and Technology, 2021,148:111726.

    41. [41]

      ENGELSEN S B,MONTEIRO C,DE PENHOAT C H,et al.The diluted aqueous solvation of carbohydrates as inferred from molecular dynamics simulations and NMR spectroscopy[J].Biophysical Chemistry,2001,93(2/3):103-127.

    42. [42]

      SAKHAEE N,SAKHAEE S,TAKALLOU A,et al.Hydrodynamic volume of trehalose and its water uptake mechanism[J].Biophysical Chemistry,2019,249:106145.

    43. [43]

      ZHANG B,CAO H J,LIN H M,et al.Insights into ice-growth inhibition by trehalose and alginate oligosaccharides in peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage[J].Food Chemistry,2019,278:482-490.

    44. [44]

      张光杰,谷令彪,周民生,等.角鲨烯/γ-环糊精包合物制备及分子模拟[J].食品科学,2019,40(20):28-33.

    45. [45]

      HERRERA A,RODRIGUEZ F J,BRUNA J E,et al.Antifungal and physicochemical properties of inclusion complexes based onβ-cyclodextrin and essential oil derivatives[J].Food Research International,2019,121:127-135.

    46. [46]

      GREINER M,SONNLEITNER B,MAILANDER M,et al.Modeling complex and multi-component food systems in molecular dynamics simulations on the example of chocolate conching[J]. Food & Function,2013,5(2):235-242.

    47. [47]

      CHI C D,LI X X,FENG T,et al.Improvement in nutritional attributes of rice starch with dodecyl gallate complexation: A molecular dynamic simulation and in vitro study[J].Journal of Agricultural and Food Chemistry,2018,66(35):9282-9290.

    48. [48]

      BORAH P K,SARKAR A,DUARY R K.Water-soluble vitamins for controlling starch digestion:Conformational scrambling and inhibition mechanism of human pancreaticα-amylase by ascorbic acid and folic acid[J].Food Chemistry,2019,288:395-404.

    49. [49]

      CEN C N,CHEN J,WANG W Q,et al.Exploring the interaction mechanism of dietary protein ovalbumin and folic acid: A combination research of molecular simulation technology and multispectroscopy[J].Food Chemistry,2022,385:132536.

    50. [50]

      JAKOBEK L.Interactions of polyphenols with carbohydrates, lipids and proteins[J].Food Chemistry,2015,175:556-567.

    51. [51]

      CHAMIZO-GONZáLEZ F,GORDILLO B,HEREDIA F J.Elucidation of the 3D structure of grape seed 7S globulin and its interaction with malvidin 3-glucoside:A molecular modeling approach[J].Food Chemistry,2021,347:129014.

    52. [52]

      MOSTAFA A,THOMAS H,JANKA K,et al.Characterization and modeling of the interactions between coffee storage proteins and phenolic compounds[J].Journal of Agricultural and Food Chemistry,2012,60(46):11601-11608.

    53. [53]

      OSSMAN T,FABRE G,TROUILLAS P.Interaction of wine anthocyanin derivatives with lipid bilayer membranes[J].Computational and Theoretical Chemistry,2016,1077:80-86.

    54. [54]

      刘本国,刘江伟,李嘉琪,等.类黄酮抑制P糖蛋白的三维定量构效关系与作用模式[J].高等学校化学学报,2017,38(1):41-46.

    55. [55]

      DELLAFIORA L,OSWALD I P,DORNE J L,et al.An in silico structural approach to characterize human and rainbow trout estrogenicity of mycotoxins: Proof of concept study using zearalenone and alternariol[J].Food Chemistry,2020,312:126088.

    56. [56]

      CHU Y H,LI Y,WANG Y T,et al.Investigation of interaction modes involved in alkaline phosphatase and organophosphorus pesticides via molecular simulations[J].Food Chemistry,2018,254:80-86.

    57. [57]

      SUN Q M,ANG H Q,TANG P X,et al.Interactions of cinnamaldehyde and its metabolite cinnamic acid with human serum albumin and interference of other food additives[J].Food Chemistry,2018,243:74-81.

    58. [58]

      WU D,WANG J Q,LIU D Y,et al.Computational and spectroscopic analysis of interaction between food colorant citrus red 2 and human serum albumin[J].Scientific Reports,2019,9(1):1-8.

    59. [59]

      WANG X J,SONG M,LIU S T,et al.Analysis of phthalate plasticizer migration from PVDC packaging materials to food simulants using molecular dynamics simulations and artificial neural network[J].Food Chemistry,2020,317:126465.

    1. [1]

      孔金明. 生物芯片技术在食品安全领域的应用综述. 轻工学报, 2013, 28(1): 1-6,15.doi: 10.3969/j.issn.2095-476X.2013.01.001

    2. [2]

      熊卫东. 基于物联网的冷链食品安全监控系统的设计与实施. 轻工学报, 2011, 26(3): 96-99.doi: 10.3969/j.issn.1004-1478.2011.03.024

    3. [3]

      王雯雯,相启森,白艳红. UV-LEDs技术在食品杀菌保鲜领域中的应用研究进展. 轻工学报, 2022, 37(1): 46-54.doi: 10.12187/2022.01.007

    4. [4]

      苑彬,金慧,骈琳,高思今,黄泽华. 美拉德反应对食品品质与安全的影响及其产物检测研究进展. 轻工学报, 2024, 39(2): 60-68.doi: 10.12187/2024.02.008

    5. [5]

      付海燕,卢欢欢,龙婉君,佘远斌. 动物源食品中抗生素残留检测方法与研究进展. 轻工学报, 2023, 38(6): 37-45.doi: 10.12187/2023.06.005

    6. [6]

      胡金强,雷俊婷,景建洲,孙新城,高辉,耿尧,章银良,董彩文,姜春鹏. 食源性致病菌PCR检测技术研究进展. 轻工学报, 2016, 31(3): 49-56.doi: 10.3969/j.issn.2096-1553.2016.3.007

    7. [7]

      岳晓月,李妍,周子君,白艳红. 荧光传感分析法在抗生素残留检测中的应用研究进展. 轻工学报, 2022, 37(4): 41-48,57.doi: 10.12187/2022.04.006

    8. [8]

      李建春,张江伟,谢小丽,李健勇,黄道颖. 基于PDF417二维条码的食品安全追溯系统的设计与实现. 轻工学报, 2011, 26(5): 53-55,64.doi: 10.3969/j.issn.1004-1478.2011.05.014

    9. [9]

      都炳强,张志毅,赵晓磊,李迎秋,何金兴. 分子印迹光子晶体技术在食品检测中的应用研究进展. 轻工学报, 2020, 35(6): 16-26.doi: 10.12187/2020.06.003

    10. [10]

      吕彦力,曹秀琴,吴学红,孟志强. 敞开式卧式陈列柜食品包温度分布的数值模拟. 轻工学报, 2013, 28(2): 1-6.doi: 10.3969/j.issn.2095-476X.2013.02.001

    11. [11]

      张勋才,孙军伟,王茜,崔光照. 基于DNA分子的信息安全技术研究综述. 轻工学报, 2016, 31(1): 67-74.doi: 10.3969/j.issn.2096-1553.2016.1.012

    12. [12]

      季宝成,杨澜瑞,韩雨,白艳红,许旭. 动物源性食品兽药多残留检测中基质净化与液相色谱-质谱联用技术研究进展. 轻工学报, 2023, 38(5): 8-16.doi: 10.12187/2023.05.002

    13. [13]

      许春平,杨琛琛. 调节血清胆固醇的保健功能食品研究综述. 轻工学报, 2014, 29(1): 44-47.doi: 10.3969/j.issn.2095-476X.2014.01.008

    14. [14]

      袁培,刘键,付云飞,郝亚萍,许旺龙,吕彦力. 立式冷藏陈列柜食品温度预测计算模型. 轻工学报, 2016, 31(6): 69-73.doi: 10.3969/j.issn.2096-1553.2016.6.010

    15. [15]

      朱蓓薇. 聚焦营养与健康,创新发展海洋食品产业. 轻工学报, 2017, 32(1): 1-6.doi: 10.3969/j.issn.2096-1553.2017.1.001

    16. [16]

      毛多斌,陈欢,杨靖,贾春晓. 阈值测定在食品特征香气分析中的应用综述. 轻工学报, 2012, 27(4): 52-55.doi: 10.3969/j.issn.1004-1478.2012.04.014

    17. [17]

      孔欣欣,游新侠,张娜. 婴幼儿谷物辅助食品紫色谷薯糊工艺及配方研究. 轻工学报, 2015, 30(1): 14-18.doi: 10.3969/j.issn.2095-476X.2015.01.004

    18. [18]

      吕彦力,孟志强,曹秀琴,马秋阳,吴学红,张文慧. 立式冷藏陈列柜内食品传热模型研究及温度预测. 轻工学报, 2012, 27(5): 59-62.doi: 10.3969/j.issn.2095-476X.2012.05.014

    19. [19]

      王琳琳,高兴明,韦海涛,范小雪,王存芳. 固定化酶在食品工业中的应用研究进展. 轻工学报, 2021, 36(2): 25-33.doi: 10.12187/2021.02.004

    20. [20]

      赵文鹏,赵昌玉,单洪雁,许慧卿,李松南,王君. 花色苷在不同环境因素和食品基质中的降解规律. 轻工学报, 2023, 38(2): 41-47.doi: 10.12187/2023.02.005

  • 加载中
计量
  • PDF下载量:88
  • 文章访问数:4920
  • 引证文献数:0
文章相关
  • 收稿日期:2022-05-23
    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    傅亮, 吕金羚, 张锦, 等. 分子模拟技术在食品组分互作体系及安全领域的应用研究进展[J]. 轻工学报, 2023, 38(2): 1-13. doi: 10.12187/2023.02.001
    引用本文:傅亮, 吕金羚, 张锦, 等. 分子模拟技术在食品组分互作体系及安全领域的应用研究进展[J]. 轻工学报, 2023, 38(2): 1-13.doi:10.12187/2023.02.001
    FU Liang, LYU Jinling, ZHANG Jin, et al. Research progress on the application of molecular simulation technology in food component interaction system and safety[J]. Journal of Light Industry, 2023, 38(2): 1-13. doi: 10.12187/2023.02.001
    Citation:FU Liang, LYU Jinling, ZHANG Jin, et al. Research progress on the application of molecular simulation technology in food component interaction system and safety[J]. Journal of Light Industry, 2023, 38(2): 1-13.doi:10.12187/2023.02.001

    分子模拟技术在食品组分互作体系及安全领域的应用研究进展

      作者简介:傅亮(1968-),男,湖南省益阳市人,暨南大学副教授,博士,主要研究方向为食品科学。E-mail:tfuliang@jnu.edu.cn
    • 1. 暨南大学 理工学院, 广东 广州 510632;
    • 2. 贵州大学 酿酒与食品工程学院, 贵州 贵阳 550025;
    • 3. 广东药科大学 中药学院, 广东 广州 511400
    基金项目:国家自然科学基金青年基金项目(31901676,32001352);广州市基础与应用基础研究项目(202102080221);贵州省科技计划项目[黔科合支撑(2020)1Y171号];阳西县级科技项目(21011)

    摘要:在食品加工和储存过程中,组分分子之间会发生复杂的相互作用,传统的实验方法难以从分子层面对影响食品营养价值和安全性的互作机制进行清晰直观的阐释。分子模拟技术基于分子模型研究分子行为以预测或解释宏观实验现象,具有客观、高效、成本低廉等优点,是连接微观与宏观尺度的重要桥梁。对该技术在食品组分互作体系、食品安全领域中的应用研究进展进行了综述,认为:分子模拟技术能够从原子/分子层面揭示食品营养物质分子间的互作机制、食品污染物的毒理机制及抑菌机理,表征分子构象的动态变化、电子转移、共价键断裂和重建等可视化数据,为改善食品的加工工艺和储存条件、提高食品的安全性等生产实践提供指导性建议。然而,近年来该技术在应用过程中存在大多数互作体系的研究相对独立、高反应性的分子在模拟过程中被认为是纯分离物或惰性物质等问题,今后应深入研究并逐步完善环境诱导下食品组分分子的构象变化、功能特性与食品品质三者之间的联系,以期为分子模拟技术在食品不同领域的实际应用提供参考。

    English Abstract

    参考文献 (59) 相关文章 (20)

    目录

    /

      返回文章