基于深度学习和蛋白质语言模型的抗菌肽预测模型研究
Research on antimicrobial peptide prediction model based on deep learning and protein language model
-
摘要:针对目前已有抗菌肽(Antimicrobial Peptides,AMPs)预测模型的准确度( ACC)仍有待提高的问题,提出一种新的基于深度学习和蛋白质语言模型的抗菌肽预测模型DeepGlap,该模型分别采用两个蛋白质语言模型对抗菌肽序列进行特征提取,将提取的特征向量融合后输入由多层双向长短记忆网络(mBi-LSTM)、一维卷积神经网络(1D-CNN)和注意力机制组成的深度学习网络中,并进行性能评估与优化。结果表明:该模型的 ACC、皮尔逊相关系数( MCC)和曲线下的面积( AUC) 分别为0.739、0.489和0.81,优于已有抗菌肽预测模型的预测效果。Abstract:In response to the need for improving prediction accuracy ( ACC) in existing models for Antimicrobial Peptides (AMPs), a novel AMP prediction model called DeepGlap was proposed. This model utilized two protein language models for feature extraction from AMP sequences, followed by fusion of feature vectors. These fused vectors were then input into a deep learning network composed of multiple layers of bidirectional long short-term memory networks (mBi-LSTM), one-dimensional convolutional neural networks (1D-CNN), and attention mechanisms. The model underwent performance evaluation and optimization. Results indicated that the model achieved ACC,the Pearson correlation coefficient ( MCC), and the area urder the curve ( AUC) values of 0.739, 0.489, and 0.81, respectively, demonstrating superior predictive performance compared to existing AMP prediction models.
-
- [1]
WHITE D G,ZHAO S H,SIMJEE S,et al.Antimicrobial resistance of foodborne pathogens[J].Microbes and Infection,2002,4(4):405-412.
- [2]
KUMAR P,KIZHAKKEDATHU J N,STRAUS S K.Antimicrobial peptides:Diversity,mechanism of action and strategies to improve the activity and biocompatibilityin vivo[J].Biomolecules,2018,8(1):4.
- [3]
ZHANG R N,WU D,GAO Y T.Progress on the design and optimization of antimicrobial peptides[J].Journal of Biomedical Engineering,2022,39(6):1247-1253.
- [4]
JOSEPH S,KARNIK S,NILAWE P,et al.ClassAMP:A prediction tool for classification of antimicrobial peptides[J].IEEE-ACM Transactions on Computational Biology and Bioinformatics,2012,9(5):1535-1538.
- [5]
SHARMA R,SHRIVASTAVA S,SINGH S K,et al.AniAMPpred:Artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom[J].Briefings in Bioinformatics,2021,22(6):bbab242.
- [6]
KAVOUSI K,BAGHERI M,BEHROUZI S,et al.IAMPE:NMR-assisted computational prediction of antimicrobial peptides[J].Journal of Chemical Information and Modeling,2020,60(10):4691-4701.
- [7]
CHUNG C R,KUO T R,WU L C,et al.Characterization and identification of antimicrobial peptides with different functional activities[J].Briefings in Bioinformatics,2020,21(3):1098-1114.
- [8]
XU J,LI F Y,LI C,et al.iAMPCN:A deep-learning approach for identifying antimicrobial peptides and their functional activities[J].Briefings in Bioinformatics,2023,24(4):bbad240.
- [9]
YAN K,LYU H W,GUO Y C,et al.sAMPpred-GAT:Prediction of antimicrobial peptide by graph attention network and predicted peptide structure[J].Bioinformatics,2023,39(1):btac715.
- [10]
FERRUZ N,HCKER B.Controllable protein design with language models[J].Nature Machine Intelligence,2022,4(6):521-532.
- [11]
WANG G S,LI X,WANG Z.APD3:The antimicrobial peptide database as a tool for research and education[J].Nucleic Acids Research,2016,44:D1087-D1093.
- [12]
ZHAO X W,WU H Y,LU H R,et al.LAMP:A database linking antimicrobial peptides[J].PLoS ONE,2013,8(6):e66557.
- [13]
THOMAS S,KARNIK S,BARAI R S,et al.CAMP:A useful resource for research on antimicrobial peptides[J].Nucleic Acids Research,2010,38:D774-D780.
- [14]
GOGOLADZE G,GRIGOLAVA M,VISHNEPOLSKY B,et al.DBAASP:Database of antimicrobial activity and structure of peptides[J].FEMS Microbiology Letters,2014,357(1):63-68.
- [15]
KANG X Y,DONG F Y,SHI C,et al.DRAMP 2.0,an updated data repository of antimicrobial peptides[J].Scientific Data,2019,6:148.
- [16]
JHONG J H,CHI Y H,LI W C,et al.dbAMP:An integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data[J].Nucleic Acids Research,2019,47:D285-D297.
- [17]
FU L M,NIU B F,ZHU Z W,et al.CD-HIT:Accelerated for clustering the next-generation sequencing data[J].Bioinformatics,2012,28(23):3150-3152.
- [18]
ZHANG Y,LIN J Y,ZHAO L M,et al.A novel antibacterial peptide recognition algorithm based on BERT[J].Briefings in Bioinformatics,2021,22(6):bbab200.
- [19]
XU J,LI F Y,LEIER A,et al.Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides[J].Briefings in Bioinformatics,2021,22(5):bbab083.
- [20]
ALLEY E C,KHIMULYA G,BISWAS S,et al.Unified rational protein engineering with sequence-based deep representation learning[J].Nature Methods,2019,16(12):1315-1322.
- [21]
BRANDES N,OFER D,PELEG Y,et al.ProteinBERT:A universal deep-learning model of protein sequence and function[J].Bioinformatics,2022,38(8):2102-2110.
- [22]
HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
- [23]
YU Z X,HUANG F,ZHAO X H,et al.Predicting drug-disease associations through layer attention graph convolutional network[J].Briefings in Bioinformatics,2021,22(4):bbaa243.
- [1]
-

计量
- PDF下载量:19
- 文章访问数:1406
- 引证文献数:0