JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

基于AFM/STM技术的离子液体表/界面性质及结构研究之进展

方金云

downloadPDF
方金云. 基于AFM/STM技术的离子液体表/界面性质及结构研究之进展[J]. 轻工学报, 2016, 31(1): 75-88. doi: 10.3969/j.issn.2096-1553.2016.1.013
引用本文:方金云. 基于AFM/STM技术的离子液体表/界面性质及结构研究之进展[J]. 轻工学报, 2016, 31(1): 75-88.doi:10.3969/j.issn.2096-1553.2016.1.013
FANG Jin-yun. Research progress of the surface/interfacial properties and structures of ionic liquids based on AFM/STM techniques[J]. Journal of Light Industry, 2016, 31(1): 75-88. doi: 10.3969/j.issn.2096-1553.2016.1.013
Citation:FANG Jin-yun. Research progress of the surface/interfacial properties and structures of ionic liquids based on AFM/STM techniques[J]. Journal of Light Industry, 2016, 31(1): 75-88.doi:10.3969/j.issn.2096-1553.2016.1.013

基于AFM/STM技术的离子液体表/界面性质及结构研究之进展

  • 中图分类号:O647.11

Research progress of the surface/interfacial properties and structures of ionic liquids based on AFM/STM techniques

  • Received Date:2015-05-20

    CLC number:O647.11

  • 摘要:AFM/STM技术对于离子液体表/界面性质与结构的研究非常重要.目前,使用AFM/STM技术直接观察离子液体薄膜、离子液体混合物、负载离子液体的结构及性质以及原位观察反应过程离子液体结构及性质变化等研究不断涌现,尤其在原位观察离子液体表/界面性质与结构变化方面,AFM/STM技术得到了很好的应用.未来应主要加强离子液体不同阴阳离子结构、性质对离子液体与气体、离子液体与固体界面影响的研究,进而形成系统化的理论,为离子液体吸收气体及催化反应的应用提供理论支持,并进一步构建模型,指导离子液体的设计.
    1. [1]

      顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料[J].科学通报,2004,49(6):515.

    2. [2] NANDA R,RAI G,KUMAR A.Interesting viscosity changes in the aqueous urea-ionic liquid system:effect of alkyl chain length attached to the cationic ring of an ionic liquid[J].J Solution Chem,2015,44(3):742.

    3. [3] ZHANG X C, HUO F, LIU X M, et al.Influence of microstructure and interaction on viscosity of ionic liquids[J].Ind Eng Chem Res,2015,54(13):3505.

    4. [4] DUPONT J,DE SOUZA R F,SUAREZ P A Z.Ionic liquid (molten salt) phase organometallic catalysis[J].Chem Rev,2002,102(10):3667.

    5. [5] ZAKRZEWSKA M E, BOGEL-ŁUKASIK E, BOGEL-ŁUKASIK R.Ionic liquid-mediated formation of 5-hydroxymethylfurfurals-A promising biomass-derived building block[J].Chem Rev,2011,111(2):397.

    6. [6] ZHANG Q H, SHREEVE J M.Energetic Ionic liquids as explosives and propellant fuels:A new journey of ionic liquid chemistry[J].Chem Rev,2014,114(20):10527.

    7. [7] PÂRVULESCU V I, HARDACRE C.Catalysis in ionic liquids[J].Chem Rev,2007,107(6):2615.

    8. [8] HALLETT J P, WELTON T.Room-temperature ionic liquids:solvents for synthesis and catalysis.2[J].Chem Rev,2011,111(5):3508.

    9. [9] LOVELOCK K R J, VILLAR-GARCIA I J, FLORIAN M, et al.Photoelectron spectroscopy of ionic liquid-based interfaces[J].Chem Rev,2010, 110(9):5158.

    10. [10]

      [10] YE C F, LIU W M, CHEN Y X, et al.Room-temperature ionic liquids:a novel versatile lubricant[J].Chem Commun,2001(21):2244.

    11. [11]

      [11] PALACIO M, BHUSHAN B.A review of Ionic liquids for green molecular lubrication in nanotechnology[J].Tribol Lett,2010, 40(2):247.

    12. [12]

      [12] BHUSHAN B, PALACIO M, KINZIG B.AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films[J].J Colloid Interf Sci,2008,317(1):275.

    13. [13]

      [13] ZHAO W J, MO Y, PU J B, et al.Effect of cation on micro/nano-tribological properties of ultra-thin ionic liquid films[J].Tribol Int,2009,42(6):828.

    14. [14]

      [14] ZHAO W J, ZHU M, MO Y F, et al.Effect of anion on micro/nano-tribological properties of ultra-thin imidazolium ionic liquid films on silicon wafer[J].Colloids and Surfaces A:Physicochem Eng Aspects, 2009, 332(2/3):78.

    15. [15]

      [15] ELBOURNE A, SWEENEY J, WEBBER G B, et al.Adsorbed and near-surface structure of ionic liquids determines nanoscale friction[J].Chem Commun, 2013,49: 6797.

    16. [16]

      [16] ZHAO W J, WANG Y, WANG L P,et al.Influence of heat treatment on the micro/nano-tribological properties of ultra-thin ionic liquid films on silicon[J].Colloids and Surfaces A:Physicochem Eng Aspects, 2010, 361 (1/3) :118.

    17. [17]

      [17] ZHAO W J, HUANG D M, PU J B,et al.Effect of heat treatment on the nano-tribological properties of ionic liquid films[C]//Technical Sessions—Proceedings of CIST2008 & ITS-IFToMM2008, Berlin:Springer Berlin Heidelberg, 2008:505-506.

    18. [18]

      [18] PU J B, HUANG D M, WANG L P, et al.Tribology study of dual-layer ultrathin ionic liquid films with bonded phase:Influences of the self-assembled underlayer[J].Colloids and Surfaces A:Physicochem Eng Aspects, 2010, 372(1/3), 155.

    19. [19]

      [21] RIETZLER F H, PIERMAIER M, DEYKO A, et al.Electrospray ionization deposition of ultrathin ionic liquid films:[C8C1Im]Cl and[C8C1Im][Tf2N] on Au(111)[J].Langmuir, 2014, 30(4):1063.

    20. [20]

      [22] BOVIO S, PODESTà A, LENARDI C, et al.Evidence of extended solidlike layering in[Bmim][NTf2] ionic liquid thin films at room-temperature[J].J Phys Chem B,2009,113(19):6600.

    21. [21]

      [23] GONG X, FRANKERT S, WANG Y J, et al.Thickness-dependent molecular arrangement and topography of ultrathin ionic liquid films on a silica surface[J].Chem Commun,2013,49(71):7803.

    22. [22]

      [24] KAMBOJ R, BHARMORIA P, CHAUHAN V, et al.Effect of cationic head group on micellization behavior of new amide-functionalized surface active ionic liquids[J].Phys Chem Chem Phys,2014,16(47):26040.

    23. [23]

      [25] TAKAOKA G H, TAKEUCHI M, RYUTO H, et al.Production and irradiation of ionic liquid cluster ions[J].Nucl Instrum Meth B, 2013, 307:257.

    24. [24]

      [26] TAKAOKA G H, HAMAGUCHI T, TAKEUCHI M, et al.Surface modification using ionic liquid ion beams[J].Nucl Instrum Meth B,2014,341:32.

    25. [25]

      [27] FU Y C, SU Y Z, WU D Y, et al.Supramolecular aggregation of inorganic molecules at Au(111) electrodes under a strong ionic atmosphere[J].J Am Chem Soc,2009,131(41):14728.

    26. [26]

      [28] PAN G B, FREYLAND W.2D phase transition of PF6adlayers at the electrified ionic liquid/Au(111) interface[J].Chem Phys Lett,2006,427:96.

    27. [27]

      [29] ATKIN R, ABEDIN S Z E, HAYES R, et al.AFM and STM studies on the surface interaction of[BMP]TFSA and[EMIm]TFSA ionic liquids with Au(111)[J].J Phys Chem C,2009,113(30):13266.

    28. [28]

      [30] ATKIN R, BORISENKO N, DRüSCHLER M, et al.An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface:potential dependent solvation layers and the herringbone reconstruction[J].Phys Chem Chem Phys,2011(13):6849.

    29. [29]

      [31] SEGURA J J,ELBOURNE A,WANLESS E J,et al.Adsorbed and near surface structure of ionic liquids at a solid interface[J].Phys Chem Chem Phys,2013,15(9):3320.

    30. [30]

      [32] SU Y Z,FU Y C,YAN J W,et al.Double layer of Au(100)/ionic liquid interface and its stability in imidazolium-based ionic liquids[J].Angew Chem,2009, 48(28):5148.

    31. [31]

      [33] SU Y Z, YAN J W, LI M G, et al.Electric double layer of Au(100)/imidazolium-based ionic liquids interface:effect of cationsize[J].J Phys Chem C,2013, 117(1):205.

    32. [32]

      [34] BUCHNER F, FORSTER-TONIGOLD K, UHL B, et al.Toward the microscopic identification of anions and cations at the ionic liquid|Ag(111) interface:a combined experimental and theoretical investigation[J].ACS Nano,2013,7(9):7773.

    33. [33]

      [35] KAISEI K,KOBAYASHI K,MATSUSHIGE K,et al.Fabrication of ionic liquid thin film by nano-inkjet printing method using atomic force microscope cantilever tip[J].Ultramicroscopy,2010,110:733.

    1. [1]

      蔡立芳,何领好,宋锐. 离子液体/壳聚糖复合膜的制备及性能研究. 轻工学报, 2014, 29(6): 39-42.doi: 10.3969/j.issn.2095-476X.2014.06.010

    2. [2]

      陈茹茹,王雪,吕兴梅,辛加余,李益,张锁江. 离子液体在生物质转化中的应用与研究进展. 轻工学报, 2019, 34(3): 1-20.doi: 10.3969/j.issn.2096-1553.2019.03.001

    3. [3]

      张锁江,刘艳荣,聂毅. 离子液体溶解天然高分子材料及绿色纺丝技术研究综述. 轻工学报, 2016, 31(2): 1-14.doi: 10.3969/j.issn.2096-1553.2016.2.001

    4. [4]

      郑勇,彭聪虎,郑永军,侯绍刚. 半纤维素在离子液体中的溶解和再生过程研究. 轻工学报, 2016, 31(2): 15-20.doi: 10.3969/j.issn.2096-1553.2016.2.002

    5. [5]

      李敏,徐东明,杨钰雯,贺姗姗,齐改改. 离子液体双水相体系结合UPLC检测食醋中杂环胺的方法. 轻工学报, 2022, 37(4): 26-33.doi: 10.12187/2022.04.004

    6. [6]

      张志平,宋洋洋,王秋领,王清福,龚贵平,付瑜锋,陈高. 基于离子液体的菌藻类胡萝卜素提取工艺研究. 轻工学报, 2024, 39(2): 19-27.doi: 10.12187/2024.02.003

    7. [7]

      马歌丽,韩甜甜,毛多斌. 酶在离子液体中的催化反应研究综述. 轻工学报, 2011, 26(5): 70-74.doi: 10.3969/j.issn.1004-1478.2011.05.018

    8. [8]

      杨艺晓,赵继红,张宏忠. 离子液体对高等植物的毒性及其生物降解性研究综述. 轻工学报, 2013, 28(6): 35-38.doi: 10.3969/j.issn.2095-476X.2013.06.009

    9. [9]

      秦浩,王洋洋,杨永超,刘智敏,佟勇,徐海鑫. 基于HTCC工艺的电化学NO2气体传感器设计与测试. 轻工学报, 2019, 34(4): 59-63.doi: 10.3969/j.issn.2096-1553.2019.04.009

    10. [10]

      郑勇,郑永军,田大勇,侯绍刚. 纤维素催化转化制取2,5-二甲基呋喃的研究. 轻工学报, 2019, 34(3): 28-33.doi: 10.3969/j.issn.2096-1553.2019.03.003

    11. [11]

      王军,武金超,杨许召,王满满,苗进辉. 双阳离子型离子液体的研究进展. 轻工学报, 2013, 28(4): 6-10,58.doi: 10.3969/j.issn.2095-476X.2013.04.002

    12. [12]

      张安琳,刘元博,陈慧,黄道颖,丁冠铭,谢兆贤. 基于JXTA网络节点RPV表的JPDV算法. 轻工学报, 2016, 31(3): 93-98.doi: 10.3969/j.issn.2096-1553.2016.3.013

    13. [13]

      王清欣,李胜军. 电能表耐电压检测试验装置. 轻工学报, 2011, 26(2): 86-89.doi: 10.3969/j.issn.1004-1478.2011.02.022

    14. [14]

      周莉,黄奕辉. 碳纤维增强复合材料加固木材界面黏结滑移模型研究. 轻工学报, 2012, 27(2): 59-62.doi: 10.3969/j.issn.1004-1478.2012.02.014

    15. [15]

      樊江磊,梁柳博,李莹,王艳,吴深,周向葵,高红霞,刘建秀. TiAl合金熔体与铸型界面反应研究进展. 轻工学报, 2020, 35(6): 68-83.doi: 10.12187/2020.06.009

    16. [16]

      张宇. 基于注册表配置的计算机病毒防治. 轻工学报, 2011, 26(4): 82-84.doi: 10.3969/j.issn.1004-1478.2011.04.019

    17. [17]

      张俊杰,郭晨,尚益民,杨旭,陈锦永,张文叶,刘崇怀. 市售夏黑无核葡萄果表微生物多样性研究. 轻工学报, 2017, 32(6): 20-26.doi: 10.3969/j.issn.2096-1553.2017.6.003

    18. [18]

      张俊杰,尚益民,程大伟,宋玉婷,陈锦永,刘崇怀. 河南安阳赤霞珠葡萄果表酵母菌的分离与鉴定. 轻工学报, 2018, 33(3): 39-44.doi: 10.3969/j.issn.2096-1553.2018.03.005

    19. [19]

      段宇莹,席俊,王一超,付杨,吴枭,孙富宇,陈珍妮. 大豆球蛋白G3A1b抗原表位的预测及初步定位. 轻工学报, 2023, 38(5): 42-50.doi: 10.12187/2023.05.006

    20. [20]

      绪连彩,张智强,彭琼阳,毛明,邵晨,蒋玲,王国庆. 脯氨酸离子液体催化CO2合成碳酸丙烯酯机理的密度泛函理论研究. 轻工学报, 2016, 31(1): 89-95.doi: 10.3969/j.issn.2096-1553.2016.1.014

  • 加载中
计量
  • PDF下载量:237
  • 文章访问数:8530
  • 引证文献数:0
文章相关
  • 收稿日期:2015-05-20
    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    方金云. 基于AFM/STM技术的离子液体表/界面性质及结构研究之进展[J]. 轻工学报, 2016, 31(1): 75-88. doi: 10.3969/j.issn.2096-1553.2016.1.013
    引用本文:方金云. 基于AFM/STM技术的离子液体表/界面性质及结构研究之进展[J]. 轻工学报, 2016, 31(1): 75-88.doi:10.3969/j.issn.2096-1553.2016.1.013
    FANG Jin-yun. Research progress of the surface/interfacial properties and structures of ionic liquids based on AFM/STM techniques[J]. Journal of Light Industry, 2016, 31(1): 75-88. doi: 10.3969/j.issn.2096-1553.2016.1.013
    Citation:FANG Jin-yun. Research progress of the surface/interfacial properties and structures of ionic liquids based on AFM/STM techniques[J]. Journal of Light Industry, 2016, 31(1): 75-88.doi:10.3969/j.issn.2096-1553.2016.1.013

    基于AFM/STM技术的离子液体表/界面性质及结构研究之进展

    • 中国科学院 理化技术研究所, 北京 100190

    摘要:AFM/STM技术对于离子液体表/界面性质与结构的研究非常重要.目前,使用AFM/STM技术直接观察离子液体薄膜、离子液体混合物、负载离子液体的结构及性质以及原位观察反应过程离子液体结构及性质变化等研究不断涌现,尤其在原位观察离子液体表/界面性质与结构变化方面,AFM/STM技术得到了很好的应用.未来应主要加强离子液体不同阴阳离子结构、性质对离子液体与气体、离子液体与固体界面影响的研究,进而形成系统化的理论,为离子液体吸收气体及催化反应的应用提供理论支持,并进一步构建模型,指导离子液体的设计.

    English Abstract

    参考文献 (33) 相关文章 (20)

    目录

    /

      返回文章