JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

共价有机骨架材料应用研究进展

孙淑敏,王培远,吴琼

downloadPDF
孙淑敏, 王培远, 吴琼. 共价有机骨架材料应用研究进展[J]. 轻工学报, 2016, 31(3): 21-32. doi: 10.3969/j.issn.2096-1553.2016.3.004
引用本文:孙淑敏, 王培远, 吴琼. 共价有机骨架材料应用研究进展[J]. 轻工学报, 2016, 31(3): 21-32.doi:10.3969/j.issn.2096-1553.2016.3.004
SUN Shu-min, WANG Pei-yuan and WU Qiong. Progress on the covalent organic frameworks and the application[J]. Journal of Light Industry, 2016, 31(3): 21-32. doi: 10.3969/j.issn.2096-1553.2016.3.004
Citation:SUN Shu-min, WANG Pei-yuan and WU Qiong. Progress on the covalent organic frameworks and the application[J]. Journal of Light Industry, 2016, 31(3): 21-32.doi:10.3969/j.issn.2096-1553.2016.3.004

共价有机骨架材料应用研究进展

  • 基金项目:郑州轻工业学院研究生科技创新基金项目(2014011)
    国家自然科学基金项目(21104070,21301159)

  • 中图分类号:O631.1

Progress on the covalent organic frameworks and the application

  • Received Date:2016-01-12
    Available Online:2016-05-15

    CLC number:O631.1

  • 摘要:共价有机骨架(COFs)材料是一种多孔晶态聚合物材料,大致可分为四类:含硼类COFs材料、亚胺类COFs材料、三嗪类COFs材料和其他类COFs材料.与传统无机多孔材料相比,COFs材料具有较高的热稳定性、极低的密度、较大的比表面积、良好的结构裁剪性等显著的优势.在气体吸附、光电、催化、传感等方面应用广泛.除要设计开发新的前体、新的合成方法以及新的连接方式来实现理论与实验的完美结合外,通过加入特定的砌块,赋予材料更广泛的应用性能,将是COFs复合材料未来的发展方向.
    1. [1]

      王培远,康华魁,孙淑敏,等.氨基功能化有机-无机杂化介孔材料合成及药物释放性能研究[J].郑州轻工业学院学报(自然科学版), 2013,28(4):1.

    2. [2]

      刘密, 韩莉锋, 肖元化,等.多孔Co3O4纳米片的制备及其电化学性能研究[J].郑州大学学报(工学版), 2013(3):46.

    3. [3]

      CÔté A P,BENIN A I, OCKWIG N W,et al.Porous,crystalline,covalent organic frameworks[J].Science, 2005, 310(5751):1166.

    4. [4]

      EL-KADERI H M, HUNT J R, MENDOZA-CORT S J L, et al.Designed synthesis of 3D covalent organic frameworks[J].Science,2007,316(5822):268.

    5. [5]

      HUNT J R, DOONAN C J, LEVANGIE J D, et al.Reticular synthesis of covalent organic borosilicate frameworks[J].Journal of the American chemical society,2008,130(36):11872.

    6. [6]

      JACKSON K T,REICH T E,EL-KADERI H M.Targeted synthesis of a porous borazine-linked covalent organic framework[J].Chemical communications,2012,48(70):8823.

    7. [7]

      LANNI L M,TILFORD R W,BHARATHY M, et al.Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks[J].Journal of the American chemical society,2011,133(35):13975.

    8. [8]

      URIBE-ROMO F J,HUNT J R,FURUKAWA H,et al.A crystalline imine-linked 3D porous covalent organic framework[J].Journal of the American chemical society, 2009, 131(13):4570.

    9. [9]

      URIBE-ROMO F J, DOONAN C J,FURUKAWA H,et al.Crystalline covalent organic frameworks with hydrazone linkages[J].Journal of the American chemical sciety,2011,133(30):11478.

    10. [10]

      JENS W,MARKUS A,ARNE T.Microporous networks of nigh-performance polymers:elastic deformations and gas sorption properties[J].Macromolecules,2008,41(8):2880.

    11. [11]

      WANG Z,ZHANG B,YU H,et al.Microporous polyimide networks with large surface areas and their hydrogen storage propertiesElectronic supplementary information (ESI) available:synthesis and characterization of monomers and polymers[J].Chemical communications,2010,46(41):7730.

    12. [12]

      CHU S,WANG Y,GUO Y,et al.Facile green synthesis of crystalline polyimide photocatalyst for hydrogen generation from water[J].Journal of materials chemistry,2012,22(31):15519.

    13. [13]

      张杰, 侯书恩, 靳洪允.聚酰亚胺类共价有机骨架多孔材料的研究进展[J].化工新型材料, 2013(3):17.

    14. [14]

      KUHN P, ANTONIETTI M,THOMAS A.Porous,covalent triazine-based frameworks prepared by ionothermal synthesis[J].Angewandte chemie international edition,2008,47(18):3450.

    15. [15]

      BOJDYS M J,JEROMENOK J,THOMAS A,et al.Rational extension of the family of layered,covalent,triazine-based frameworks with regular porosity[J].Advanced materials,2010,22(19):2202.

    16. [16]

      LI Z, ZHI Y,FENG X,et al.An azine-linked covalent organic framework:synthesis,characterization and efficient gas storage[J].Chemistry-A European journal,2015,21(34):12079.

    17. [17]

      NAGAI A, CHEN X,FENG X,et al.A squaraine-linked mesoporous covalent organic framework[J].Angewandte chemie,2013,125(13):3858.

    18. [18]

      张春燕, 罗建新, 张德春,等.共价有机骨架聚合物(COFs)的研究进展[J].化工新型材料,2014(12):19.

    19. [19]

      CAO D, LAN J, WANG W,et al.Lithium-doped 3D covalent organic frameworks:high-capacity hydrogen storage materials[J].Angewandte chemie international edition,2009,48(26):4730.

    20. [20]

      LAN J,CAO D,WANG W.Li-doped and nondoped covalent organic borosilicate framework for hydrogen storage[J].The Journal of physical chemistry C,2010,114(7):3108.

    21. [21]

      LI Y,YANG R T.Hydrogen storage in metal-organic and covalent-organic frameworks by spillover[J].AIChE journal,2008,54(1):269.

    22. [22]

      SONG Y, DAI J H.Mechanisms of dopants influence on hydrogen uptake in COF-108:a first principles study[J].International journal of hydrogen energy,2013,38(34):14668.

    23. [23]

      DING S Y,GAO J,WANG Q,et al.Construction of covalent organic framework for catalysis:Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J].Journal of the American chemical society,2011,133(49):19816.

    24. [24]

      ZHANG P,WENG Z,GUO J,et al.Solution-dispersible,colloidal,conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the suzuki-miyaura coupling reaction[J].Chemistry of materials,2011,23(23):5243.

    25. [25]

      XU H,CHEN X,GAO J,et al.Catalytic covalent organic frameworks via pore surface engineering[J].Chemical communications,2014,50(11):1292.

    26. [26]

      WU Y, XU H, CHEN X, et al.A π-electronic covalent organic framework catalyst:π-walls as catalytic beds for Diels-Alder reactions under ambient conditions[J].Chemical communications,2015,51(50):10096.

    27. [27]

      FANG Q,GU S,ZHENG J,et al.3D microporous base-functionalized covalent organic frameworks for size-selective catalysis[J].Angewandte chemie international edition,2014,53(11):2878.

    28. [28]

      WAN S, GUO J,KIM J,et al.A photoconductive covalent organic framework:self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation[J].Angewandte chemie international edition,2009,48(30):5439.

    29. [29]

      DING X,CHEN L,HONSHO Y,et al.Ann-channel two-dimensional covalent organic framework[J].Journal of the American chemical society,2011,133(37):14510.

    30. [30]

      FENG X,CHEN L,HONSHO Y,et al.An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering[J].Advanced materials,2012,24(22):3026.

    31. [31]

      HUANG N,DING X,KIM J,et al.A Photoresponsive smart covalent organic framework[J].Angewandte chemie,2015,127(30):8828.

    32. [32]

      XIANG Z,CAO D.Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules[J].Macromolecular rapid communications,2012,33(14):1184.

    33. [33]

      冯小林.功能化共价有机框架材料的设计、合成和应用及天然产物Orisuaveolines A和B的合成研究[D].兰州:兰州大学,2013.

    34. [34]

      丁三元.功能化共价有机框架材料:设计合成、表征及应用[D].兰州:兰州大学,2014.

    35. [35]

      LI J, YANG X,BAI C,et al.A novel benzimidazole-functionalized 2D COF material:synthesis and application as a selective solid-phase extractant for separation of uranium[J].Journal of colloid and interface science,2015,437:211.

    36. [36]

      YANG C,LIU C,CAO Y,et al.Facile room-temperature solution-phase synthesis of a spherical covalent organic framework forhigh-resolution chromatographic separation[J].Chemical communications,2015,51:12254.

    37. [37]

      PACHFULE P,KANDMABETH S,MALLICK A,et al.Hollow tubular porous covalent organic framework (COF) nanostructures[J].Chemical communications,2015,51(58):11717.

    38. [38]

      FANG Q,WANG J,GU S,et al.3D porous crystalline polyimide covalent organic frameworks for drug delivery[J].Journal of the American chemical society,2015,137(26):8352.

    39. [39]

      WANG P,KANG M,SUN S,et al.Imine-linked covalent organic framework on surface for biosensor[J].Chinese journal of chemistry,2014,32(9):838.

    40. [40]

      WANG P,WU Q,HAN L,et al.Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrodes[J].Rsc advances,2015,5(35):27290.

    1. [1]

      郑勇,郑永军,田大勇,侯绍刚. 纤维素催化转化制取2,5-二甲基呋喃的研究. 轻工学报, 2019, 34(3): 28-33.doi: 10.3969/j.issn.2096-1553.2019.03.003

    2. [2]

      孙淑敏,周超,吴琼,王培远. 三嗪基共价有机骨架/石墨烯复合材料的合成及其电化学性能研究. 轻工学报, 2018, 33(1): 43-48.doi: 10.3969/j.issn.2096-1553.2018.01.006

    3. [3]

      陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展. 轻工学报, 2017, 32(5): 32-41.doi: 10.3969/j.issn.2096-1553.2017.5.005

    4. [4]

      王培远,康华魁,孙淑敏,方少明. 氨基功能化有机-无机杂化介孔材料合成及药物释放性能研究. 轻工学报, 2013, 28(4): 1-5.doi: 10.3969/j.issn.2095-476X.2013.04.001

    5. [5]

      韩莉锋,王志涛,金恺,张林森. ZnWO4/竹炭复合材料的制备及其光催化性能研究. 轻工学报, 2014, 29(4): 16-19.doi: 10.3969/j.issn.2095-476X.2014.04.004

    6. [6]

      陈凤华,石向东,梁娓娓,杨茂森,凡文蕊,陈庆涛,姜利英. CC/TiO2/Ag@AgCl复合材料的制备及其光催化性能研究. 轻工学报, 2021, 36(6): 91-101,109.doi: 10.12187/2021.06.011

    7. [7]

      方华,张振华,常鑫波,张含之,张辉. 分级多孔石墨烯/活性炭复合材料的制备及其电化学电容性能分析. 轻工学报, 2018, 33(5): 77-82.doi: 10.3969/j.issn.2096-1553.2018.05.010

    8. [8]

      朱灵峰,孙倩,高如琴,贾梦哲,赵幸幸,吕昌昌,赵玉驰,秦梦涛. 纳米TiO2/硅藻土基多孔陶粒复合材料的制备及其甲醛去除效果研究. 轻工学报, 2018, 33(2): 1-6.doi: 10.3969/j.issn.2096-1553.2018.02.001

    9. [9]

      史岽瑛,崔超杰,李会林,聂周缓,郑凯君. 光敏性H2[Ag2(W10O32)(BPY)4]复合材料的制备及其光催化氧化环己烷性能研究. 轻工学报, 2020, 35(1): 47-54.doi: 10.12187/2020.01.006

    10. [10]

      黄改玲,王东,蒋玲,周婧,赵玉成. Mg2Al-LS-LDH复合材料的制备及吸附性能研究. 轻工学报, 2015, 30(5-6): 12-16.doi: 10.3969/j.issn.2095-476X.2015.5/6.003

    11. [11]

      蔡艳荣,蒋伟丽,常春. 海洋废弃生物质基吸附材料去除水中重金属离子的研究进展. 轻工学报, 2022, 37(4): 100-110.doi: 10.12187/2022.04.014

    12. [12]

      韩云辉,韩磊,范黎,翟玉俊. 烟用材料编码及应用. 轻工学报, 2012, 27(4): 87-90.doi: 10.3969/j.issn.1004-1478.2012.04.022

    13. [13]

      孙君曼,贾岩,冯波,杨智灵,李存英,石宣喜. 建筑材料养护室的远程监控系统设计. 轻工学报, 2013, 28(5): 85-88.doi: 10.3969/j.issn.2095-476X.2013.05.020

    14. [14]

      徐燕,刘伟,于观成,王智军,黄学金. 十水硫酸钠储热材料在农业大棚中的应用. 轻工学报, 2011, 26(2): 98-100.doi: 10.3969/j.issn.1004-1478.2011.02.025

    15. [15]

      周莉,黄奕辉. 碳纤维增强复合材料加固木材界面黏结滑移模型研究. 轻工学报, 2012, 27(2): 59-62.doi: 10.3969/j.issn.1004-1478.2012.02.014

    16. [16]

      彭东来,张帅,张治红,何领好. 石墨烯基/金纳米复合材料制备及应用述评. 轻工学报, 2014, 29(5): 23-27.doi: 10.3969/j.issn.2095-476X.2014.05.005

    17. [17]

      王明花,杨光,张园厂,康萌萌,何领好,冯孝中,彭东来,张治红. DNA在石墨烯/金纳米/聚吡咯复合材料上的固定及杂交. 轻工学报, 2014, 29(4): 6-11.doi: 10.3969/j.issn.2095-476X.2014.04.002

    18. [18]

      吴慈,梁玉,梁振,张丽华,张玉奎. 整体材料的研制及其在蛋白质组色谱分离中的应用. 轻工学报, 2016, 31(4): 1-14.doi: 10.3969/j.issn.2096-1553.2016.4.001

    19. [19]

      巩合春,赵洪涛,任广义,代海洋. Ce掺杂ZnO螺丝刀状纳米材料的制备及其光学特性研究. 轻工学报, 2019, 34(2): 50-55.doi: 10.3969/j.issn.2096-1553.2019.02.007

    20. [20]

      张治红,时宇,刘顺利,闫福丰,冯孝中. 氧化亚铜/石墨烯纳米复合材料的制备及性能研究. 轻工学报, 2013, 28(2): 44-48.doi: 10.3969/j.issn.2095-476X.2013.02.011

  • 加载中
计量
  • PDF下载量:803
  • 文章访问数:9250
  • 引证文献数:0
文章相关
  • 收稿日期:2016-01-12
  • 刊出日期:2016-05-15
    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    孙淑敏, 王培远, 吴琼. 共价有机骨架材料应用研究进展[J]. 轻工学报, 2016, 31(3): 21-32. doi: 10.3969/j.issn.2096-1553.2016.3.004
    引用本文:孙淑敏, 王培远, 吴琼. 共价有机骨架材料应用研究进展[J]. 轻工学报, 2016, 31(3): 21-32.doi:10.3969/j.issn.2096-1553.2016.3.004
    SUN Shu-min, WANG Pei-yuan and WU Qiong. Progress on the covalent organic frameworks and the application[J]. Journal of Light Industry, 2016, 31(3): 21-32. doi: 10.3969/j.issn.2096-1553.2016.3.004
    Citation:SUN Shu-min, WANG Pei-yuan and WU Qiong. Progress on the covalent organic frameworks and the application[J]. Journal of Light Industry, 2016, 31(3): 21-32.doi:10.3969/j.issn.2096-1553.2016.3.004

    共价有机骨架材料应用研究进展

    • 郑州轻工业学院 材料与化学工程学院, 河南 郑州 450001
    基金项目:郑州轻工业学院研究生科技创新基金项目(2014011)国家自然科学基金项目(21104070,21301159)

    摘要:共价有机骨架(COFs)材料是一种多孔晶态聚合物材料,大致可分为四类:含硼类COFs材料、亚胺类COFs材料、三嗪类COFs材料和其他类COFs材料.与传统无机多孔材料相比,COFs材料具有较高的热稳定性、极低的密度、较大的比表面积、良好的结构裁剪性等显著的优势.在气体吸附、光电、催化、传感等方面应用广泛.除要设计开发新的前体、新的合成方法以及新的连接方式来实现理论与实验的完美结合外,通过加入特定的砌块,赋予材料更广泛的应用性能,将是COFs复合材料未来的发展方向.

    English Abstract

    参考文献 (40) 相关文章 (20)

    目录

    /

      返回文章