JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

整体材料的研制及其在蛋白质组色谱分离中的应用

吴慈,梁玉,梁振,张丽华,张玉奎

downloadPDF
吴慈, 梁玉, 梁振, 等. 整体材料的研制及其在蛋白质组色谱分离中的应用[J]. 轻工学报, 2016, 31(4): 1-14. doi: 10.3969/j.issn.2096-1553.2016.4.001
引用本文:吴慈, 梁玉, 梁振, 等. 整体材料的研制及其在蛋白质组色谱分离中的应用[J]. 轻工学报, 2016, 31(4): 1-14.doi:10.3969/j.issn.2096-1553.2016.4.001
WU Ci, LIANG Yu, LIANG Zhen, et al. Preparation of monolithic materials and applications in proteomic chromatographic separation[J]. Journal of Light Industry, 2016, 31(4): 1-14. doi: 10.3969/j.issn.2096-1553.2016.4.001
Citation:WU Ci, LIANG Yu, LIANG Zhen, et al. Preparation of monolithic materials and applications in proteomic chromatographic separation[J]. Journal of Light Industry, 2016, 31(4): 1-14.doi:10.3969/j.issn.2096-1553.2016.4.001

整体材料的研制及其在蛋白质组色谱分离中的应用

  • 基金项目:国家自然科学基金项目(21575139,21235005,21190043)

  • 中图分类号:O657.7

Preparation of monolithic materials and applications in proteomic chromatographic separation

  • Received Date:2016-04-13
    Available Online:2016-07-15

    CLC number:O657.7

  • 摘要:整体材料由于具有制备简单、传质速度快、低背压、表面易于修饰等优势,在色谱分离领域中应用非常广泛.为使业界了解国内外对整体材料研制的现状,对有机聚合物整体材料、硅胶整体材料、有机-无机杂化整体材料三种整体材料的制备方法及其在蛋白质组学中蛋白质和肽段色谱分离中的应用进行了综述,指出:与填充柱相比,整体柱的分离柱效仍有待进一步提高,可以从整体材料的性能,如比表面积、孔径分布、稳定性、亲水性等方面进行改进.利用整体材料低背压的优势,可制备超长、超细内径毛细管整体柱,有利于微量蛋白质组学样品的高效分离分析.随着对整体材料制备技术的不断深入研究,整体材料也将在食品安全、生命科学、环境问题等众多领域发挥更重要的作用.
    1. [1]

      HJERTEN S,LIAO J L,ZHANG R.High-performanceliquid chromatography on continuous polymer beds[J].Journal of Chromatography A,1989,473:273.

    2. [2]

      TANAKA N,MCCALLEY D V.Core-shell,ultrasmall particles,monoliths,and other support materials in high-performance liquid chromatography[J].Analytical Chemistry,2016,88(1):279.

    3. [3]

      WU R A,HU L,WANG F,et al.Recent deve-lopment of monolithic stationary phases with emphasis on microscale chromatographic separation[J].Journal of Chromatography A,2008,1184(1):369.

    4. [4]

      SVEC F,LV Y.Advances and recent trends in the field of monolithic columns for chromatography[J].Analytical Chemistry,2014,87(1):250.

    5. [5]

      PETERS E C,SVEC F,FRECHET J M.Rigid macroporous polymer monoliths[J].Advanced Materials,1999,11(14):1169.

    6. [6]

      ARRUA R D,TALEBI M,CAUSON T J,et al.Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules[J].Analytica Chimica Acta,2012,738:1.

    7. [7]

      NISCHANG I.Porous polymer monoliths:morphology,porous properties,polymer nanoscale gel structure and their impact on chromatographic performance[J].Journal of Chromatography A,2013,1287:39.

    8. [8]

      YU S,NG F L,MA K C C,et al.Effect of porogenic solvent on the porous properties of polymer monoliths[J].Journal of Applied Polymer Science,2013,127(4):2641.

    9. [9]

      SVEC F,FRECHET J M J.Continuous rods of macroporous polymer as high-performance liquid chromatography separation media[J].Analytical Chemistry,1992,64(7):820.

    10. [10]

      PETERS E C,PETRO M,SVEC F,et al.Molded rigid polymer monoliths as separation media for capillary electrochromatography.2.Effect of chromatographic conditions on the separation[J].Analytical Chemistry,1998,70(11):2296.

    11. [11]

      LE T P,MOAD G,RIZZARDO E,et al.Polymerization with living characteristics:US 7250479[P].2007-07-31.

    12. [12]

      IDE N,FUKUDA T.Nitroxide-controlled free-radical copolymerization of vinyl and divinyl monomers.2.Gelation[J].Macromolecules,1999,32(1):95.

    13. [13]

      CHEN Z,YE Q.Doping a novel controlled/"living" radical for the polymerization of a lauryl methacrylate monolithic column for improving column efficiency[J].Analytical Methods,2014,6(10):3235.

    14. [14]

      LUBBAD S H,BUCHMEISER M R.Ring-opening metathesis polymerization-derived monolithic anion exchangers for the fast separation of double-stranded DNA fragments[J].Journal of Chromatography A,2011,1218(17):2362.

    15. [15]

      LUBBAD S H,BANDARI R,BUCHMEISER M R.Ring-opening metathesis polymerization-derived monolithic strong anion exchangers for the separation of 5'-phosphorylated oligodeoxythymidylic acids fragments[J].Journal of Chromatography A,2011,1218(49):8897.

    16. [16]

      LIU Z,OU J,LIN H,et al.Preparation of monolithic polymer columns with homogeneous structure via photoinitiated thiol-yne click polymerization and their application in separation of small molecules[J].Analytical Chemistry,2014,86(24):12334.

    17. [17]

      LIN H,OU J,LIU Z,et al.Thiol-epoxy click polymerization for preparation of polymeric monoliths with well-defined 3D framework for capillary liquid chromatography[J].Analytical Chemistry,2015,87(6):3476.

    18. [18]

      LV Y,LIN Z,SVEC F.Hypercrosslinked large surface area porous polymer monoliths for hydrophilic interaction liquid chromatography of small molecules featuring zwitterionic functionalities attached to gold nanoparticles held in layered structure[J].Analytical Chemistry,2012,84(20):8457.

    19. [19]

      URBAN J,SVEC F,FRECHET J M J.Efficient separation of small molecules using a large surface area hypercrosslinked monolithic polymer capillary column[J].Analytical Chemistry,2010,82(5):1621.

    20. [20]

      URBAN J,SVEC F,FRECHET J M J.Hypercrosslinking:new approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules[J].Journal of Chromatography A,2010,1217(52):8212.

    21. [21]

      XU Y,CAO Q,SVEC F,et al.Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides[J].Analytical Chemistry,2010,82(8):3352.

    22. [22]

      CHAMBERS S D,HOLCOMBE T W,SVEC F,et al.Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules[J].Analytical Chemistry,2011,83(24):9478.

    23. [23]

      KRENKOVA J,LACHER N A,SVEC F.Control of selectivity via nanochemistry:monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides[J].Analytical Chemistry,2010,82(19):8335.

    24. [24]

      TONG S,LIU S,WANG H,et al.Recent advances of polymer monolithic columns functionalized with micro/nanomaterials:synthesis and application[J].Chromatographia,2014,77(1/2):5.

    25. [25]

      JANDERA P,URBAN J,ŠKEŘKOV V,et al.Polymethacrylate monolithic and hybrid particle-monolithic columns for reversed-phase and hydrophilic interaction capillary liquid chromatography[J].Journal of Chromatography A,2010,1217(1):22.

    26. [26]

      WANG M M,YAN X P.Fabrication of graphene oxide nanosheets incorporated monolithic column via one-step room temperature polymerization for capillary electrochromatography[J].Analytical Chemistry,2011,84(1):39.

    27. [27]

      FU Y Y,YANG C X,YAN X P.Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules[J].Chemical Communications,2013,49(64):7162.

    28. [28]

      SEO M,KIM S,OH J,et al.Hierarchically porous polymers from hyper-cross-linked block polymer precursors[J].Journal of the American Chemical Society,2015,137(2):600.

    29. [29]

      SABA S A,MOUSAVI M P,BVHLMANN P,et al.Hierarchically porous polymer monoliths by combining controlled macro-and microphase separation[J].Journal of the American Chemical Society,2015,137(28):8896.

    30. [30]

      MINAKUCHI H,NAKANISHI K,SOGA N,et al.Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography[J].Analytical Chemistry,1996,68(19):3498.

    31. [31]

      SMÅTT J,SCHUNK S,LINDEN M.Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity[J].Chemistry of Materials,2003,15(12):2354.

    32. [32]

      ZHONG H,LIU J,WANG P,et al.Inorganic salt aided synthesis of monolithic silica with meso/macro hierarchical structure[J].Microporous and Mesoporous Materials,2009,123(1):63.

    33. [33]

      AMATANI T,NAKANISHI K,HIRAO K,et al.Monolithic periodic mesoporous silica with well-defined macropores[J].Chemistry of Materials,2005,17(8):2114.

    34. [34]

      BABIN J,IAPICHELLA J,LEFEVRE B,et al.MCM-41 silica monoliths with independent control of meso-and macroporosity[J].New Journal of Chemistry,2007,31(11):1907.

    35. [35]

      ZHONG H,ZHU G,WANG P,et al.Direct synthesis of hierarchical monolithic silica for high performance liquid chromatography[J].Journal of Chromatography A,2008,1190(1):232.

    36. [36]

      BIDEAU J L,MIAH M Y,VIOUX A,et al.Bimodal porous silica monoliths obtained by phase separation in non-aqueous media[J].Journal of Materials Chemistry,2010,20(5):964.

    37. [37]

      DRISKO G L,ZELCER A,CARUSO R A,et al.One-pot synthesis of silica monoliths with hierarchically porous structure[J].Microporous and Mesoporous Materials,2012,148(1):137.

    38. [38]

      GUO J,LU Y,ZHANG S.Preparation of a high specific surface area monolithic silica reversed phase chromatography column using a template induced method[J].New Journal of Chemistry,2014,38(9):4190.

    39. [39]

      WANG K,CHEN Y,YANG H,et al.Modification of VTMS hybrid monolith via thiol-ene click chemistry for capillary electrochromatography[J].Talanta,2012,91:52.

    40. [40]

      FENG R,TIAN Y,CHEN H,et al.Terminal-vinyl liquid crystal crown ether-modified,vinyl-functionalized hybrid silica monolith for capillary electrochromatography[J].Electrophoresis,2010,31(12):1975.

    41. [41]

      XU L,LEE H K.Preparation,characterization and analytical application of a hybrid organic-inorganic silica-based monolith[J].Journal of Chromatography A,2008,1195(1):78.

    42. [42]

      COL N H,ZHANG X,MURPHY J K,et al.Allyl-functionalized hybrid silica monoliths[J].Chemical Communications,2005(22):2826.

    43. [43]

      YAN L,ZHANG Q,ZHANG J,et al.Hybrid organic-inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography[J].Journal of Chromatography A,2004,1046(1):255.

    44. [44]

      MA J,LIANG Z,QIAO X,et al.Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity[J].Analytical Chemistry,2008,80(8):2949.

    45. [45]

      HOU C,MA J,TAO D,et al.Organic-inorganic hybrid silica monolith based immobilized titanium ion affinity chromatography column for analysis of mitochondrial phosphoproteome[J].Journal of Proteome Research,2010,9(8):4093.

    46. [46]

      DENG N,LIANG Z,LIANG Y,et al.Aptamer modified organic-inorganic hybrid silica monolithic capillary columns for highly selective recognition of thrombin[J].Analytical Cemistry,2012,84(23):10186.

    47. [47]

      WU M,WU RA,WANG F,et al. "One-pot" process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane[J].Analytical Chemistry,2009,81(9):3529.

    48. [48]

      ZHANG Z,WANG F,XU B,et al.Preparation of capillary hybrid monolithic column with sulfonate strong cation exchanger for proteome analysis[J].Journal of Chromatography A,2012,1256:136.

    49. [49]

      ZHANG Z,WU M,WU RA,et al.Preparation of perphenylcarbamoylatedβ-cyclodextrin-silica hybrid monolithic column with "one-pot" approach for enantioseparation by capillary liquid chromatography[J].Analytical Chemistry,2011,83(9):3616.

    50. [50]

      ZHANG Z,WANG F,OU J,et al.Preparation of a butyl-silica hybrid monolithic column with a "one-pot" process for bioseparation by capillary liquid chromatography[J].Analytical and Bioanalytical Chemistry,2013,405(7):2265.

    51. [51]

      ZHANG Z,LIN H,OU J,et al.Preparation of phenyl-silica hybrid monolithic column with "one-pot" process for capillary liquid chromatography[J].Journal of Chromatography A,2012,1228:263.

    52. [52]

      ZHANG Z,WANG F,DONG J,et al.A "one step" approach for preparation of an octadecyl-silica hybrid monolithic column via a non-hydrolytic sol-gel (NHSG) method[J].RSC Advances,2013,3:8.

    53. [53]

      MARK J E.Some interesting things about polysiloxanes[J].Accounts of Chemical Research,2004,37(12):946.

    54. [54]

      TANAKA K,CHUJO Y.Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS)[J].Journal of Materials Chemistry,2012,22(5):1733.

    55. [55]

      LIN H,CHEN L,OU J,et al.Preparation of well-controlled three-dimensional skeletal hybrid monoliths via thiol-epoxy click polymerization for highly efficient separation of small molecules in capillary liquid chromatography[J].Journal of Chromatography A,2015,1416:74.

    56. [56]

      LIN H,OU J,LIU Z,WANG H,et al.Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography[J].Journal of Chromatography A,2015,1379:34.

    57. [57]

      ZHANG H,OU J,LIU Z,et al.Preparation of hybrid monolithic columns via "one-pot" photoinitiated thiol-acrylate polymerization for retention-independent performance in capillary liquid chromatography[J].Analytical Chemistry,2015,87(17):8789.

    58. [58]

      LIU Z,OU J,LIN H,et al.Preparation of polyhedral oligomeric silsesquioxane-based hybrid monolith by ring-opening polymerization and post-functionalization via thiol-ene click reaction[J].Journal of Chromatography A,2014,1342:70.

    59. [59]

      INAGAKI S,GUAN S,FUKUSHIMA Y,et al.Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks[J].Journal of the American Chemical Society,1999,121(41):9611.

    60. [60]

      SALESCH T,BACHMANN S,BRUGGER S,et al.New inorganic-organic hybrid materials for HPLC separation obtained by direct synthesis in the presence of a surfactant[J].Advanced Functional Materials,2002,12(2):134.

    61. [61]

      REBBIN V,SCHMIDT R,FROBA M.Spherical particles of phenylene-bridged periodic mesoporous organosilica for high-performance liquid chromatography[J].Angewandte Chemie International Edition,2006,45(31):5210.

    62. [62]

      NAKANISHI K,KOBAYASHI Y,AMATANI T,et al.Spontaneous formation of hierarchical macro-mesoporous ethane-silica monolith[J].Chemistry of Materials,2004,16(19):3652.

    63. [63]

      BRANDHUBER D,PETERLIK H,HUESING N.Facile self-assembly processes to phenylene-bridged silica monoliths with four levels of hierarchy[J].Small,2006,2(4):503.

    64. [64]

      ZHONG H,ZHU G,YANG J,et al.Periodic mesoporous hybrid monolith with hierarchical macro-mesopores[J].Microporous and Mesoporous Materials,2007,100(1):259.

    65. [65]

      CAUSON T J,NISCHANG I.Critical differences in chromatographic properties of silica-and polymer-based monoliths[J].Journal of Chromatography A,2014,1358:165.

    66. [66]

      BAI L,WANG J,ZHANG H,et al.Ionic liquid as porogen in the preparation of a polymer-based monolith for the separation of protein by high performance liquid chromatography[J].Analytical Methods,2015,7(2):607.

    67. [67]

      MASINI J C.Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column[J].Analytical and Bioanalytical Chemistry,2016,408(5):1445.

    68. [68]

      SIMONE P,PIERRI G,FOGLIA P,et al.Separation of intact proteins on γ-ray-induced polymethacrylate monolithic columns:a highly permeable stationary phase with high peak capacity for capillary high-performance liquid chromatography with high-resolution mass spectrometry[J].Journal of Separation Science,2015,39(2):1.

    69. [69]

      LIU Z,OU J,LIU Z,et al.Separation of intact proteins by using polyhedral oligomeric silsesquioxane based hybrid monolithic capillary columns[J].Journal of Chromatography A,2013,1317:138.

    70. [70]

      NISCHANG I,SVEC F,FRECHET J M.Downscaling limits and confinement effects in the miniaturization of porous polymer monoliths in narrow bore capillaries[J].Analytical Chemistry,2009,81(17):7390.

    71. [71]

      JIANG X,DONG J,WANG F,et al.Automation of nanoflow liquid chromatography-tandem mass spectrometry for proteome and peptide profiling analysis by using a monolithic analytical capillary column[J].Electrophoresis,2008,29(8):1612.

    72. [72]

      MEENT M H M V D,EELTINK S,JONG G D J.Potential of poly (styrene-co-divinylbenzene) monolithic columns for the LC-MS analysis of protein digests[J].Analytical and Bioanalytical Chemistry,2011,399(5):1845.

    73. [73]

      EELTINK S,DOLMAN S,DETOBEL F,et al.High-efficiency liquid chromatography-mass spectrometry separations with 50 mm,250 mm,and 1 m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests[J].Journal of Chromatography A,2010,1217(43):6610.

    74. [74]

      HORIE K,KAMAKURA T,IKEGAMI T,et al.Hydrophilic interaction chromatography using a meter-scale monolithic silica capillary column for proteomics LC-MS[J].Analytical Chemistry,2014,86(8):3817.

    75. [75]

      CHEN X,TOLLEY H D,LEE M L.Monolithic capillary columns synthesized from a single phosphate-containing dimethacrylate monomer for cation-exchange chromatography of peptides and proteins[J].Journal of Chromatography A,2011,1218(28):4322.

    1. [1]

      杨开广,张丽华,张玉奎. 蛋白质分离和鉴定的新技术新方法研究进展. 轻工学报, 2012, 27(5): 1-7,12.doi: 10.3969/j.issn.2095-476X.2012.05.001

    2. [2]

      张林森,白庆玲,宋铁峰,刘赟,王力臻,李素珍. 染料敏化太阳能电池中TiO2和ZnO薄膜光阳极制备方法述评. 轻工学报, 2013, 28(6): 48-52,85.doi: 10.3969/j.issn.2095-476X.2013.06.012

    3. [3]

      王晓,吴洲,王宏伟,王榕,陈浩然. 基于深度学习和蛋白质语言模型的抗菌肽预测模型研究. 轻工学报, 2024, 39(2): 12-18.doi: 10.12187/2024.02.002

    4. [4]

      李莹,苏钰,李军,陈成. 不同方法制备的ZnMn2O4/RGO复合材料电化学性能对比分析. 轻工学报, 2020, 35(3): 44-51.doi: 10.12187/2020.03.006

    5. [5]

      方刚. 基于统计语言模型及动态规划算法的蛋白质表达载体的优化设计. 轻工学报, 2016, 31(4): 88-94.doi: 10.3969/j.issn.2096-1553.2016.4.013

    6. [6]

      赵建国,李玉,杨德健,朱昌蔼,李刚强. 双酚A废水处理对污泥急性毒性和蛋白质表达的影响. 轻工学报, 2018, 33(6): 19-26.doi: 10.3969/j.issn.2096-1553.2018.06.003

    7. [7]

      楚鹏飞,倪众,卢晨曦,杨涵颖,于曼曼,刘玉欣. 低温长时间热加工对海参体壁蛋白质消化吸收特性的影响. 轻工学报, 2023, 38(4): 37-45.doi: 10.12187/2023.04.005

    8. [8]

      韩光鲁,陈哲,樊凯奇,张学波,郝彬,任静怡. 用于分离废水中苯酚/苯胺的渗透汽化膜材料研究进展. 轻工学报, 2019, 34(5): 68-77.doi: 10.3969/j.issn.2096-1553.2019.05.010

    9. [9]

      余晶晶,蔡君兰,王冰,秦亚琼,赵晓东,刘克建,薛聪,张晓兵,刘绍锋. 手性色谱柱-HPLC-DAD法分离分析烟草与烟草制品中烟碱旋光异构体. 轻工学报, 2018, 33(5): 44-52.doi: 10.3969/j.issn.2096-1553.2018.05.006

    10. [10]

      林子璇,董会龙,牛猛,张宾佳,贾才华,许燕,赵思明. 湿碱面加工过程中蛋白质和淀粉的特性变化及淋油静置工艺优化. 轻工学报, 2023, 38(1): 34-44.doi: 10.12187/2023.01.005

    11. [11]

      陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展. 轻工学报, 2017, 32(5): 32-41.doi: 10.3969/j.issn.2096-1553.2017.5.005

    12. [12]

      伊勇涛,谢金栋,向晨,李斌,操晓亮,蓝洪桥. 膜技术在茶香烟用香料分离、浓缩制备中的应用. 轻工学报, 2016, 31(5): 15-19.doi: 10.3969/j.issn.2096-1553.2016.5.003

    13. [13]

      贾春晓,张月丽,陈芝飞,蔡莉莉,孙志涛,马宇平,毛多斌. 卷烟烟气中性香味成分的半制备HPLC分离与GC-MS测定. 轻工学报, 2017, 32(6): 63-72.doi: 10.3969/j.issn.2096-1553.2017.6.008

    14. [14]

      栗俊广,张旭玥,陈宇豪,王昱,刘骁,白艳红. 鹰嘴豆分离蛋白对猪肉肌原纤维蛋白乳化特性的影响. 轻工学报, 2021, 36(6): 30-37.doi: 10.12187/2021.06.004

    15. [15]

      章平泉,徐光忠,杜秀敏,李青,于小红. 气相色谱-质谱联用法测定水基胶中邻苯二甲酸酯含量的方法改进. 轻工学报, 2014, 29(6): 9-12.doi: 10.3969/j.issn.2095-476X.2014.06.003

    16. [16]

      黄改玲,王东,蒋玲,周婧,赵玉成. Mg2Al-LS-LDH复合材料的制备及吸附性能研究. 轻工学报, 2015, 30(5-6): 12-16.doi: 10.3969/j.issn.2095-476X.2015.5/6.003

    17. [17]

      韩莉锋,王志涛,金恺,张林森. ZnWO4/竹炭复合材料的制备及其光催化性能研究. 轻工学报, 2014, 29(4): 16-19.doi: 10.3969/j.issn.2095-476X.2014.04.004

    18. [18]

      彭东来,张帅,张治红,何领好. 石墨烯基/金纳米复合材料制备及应用述评. 轻工学报, 2014, 29(5): 23-27.doi: 10.3969/j.issn.2095-476X.2014.05.005

    19. [19]

      巩合春,赵洪涛,任广义,代海洋. Ce掺杂ZnO螺丝刀状纳米材料的制备及其光学特性研究. 轻工学报, 2019, 34(2): 50-55.doi: 10.3969/j.issn.2096-1553.2019.02.007

    20. [20]

      张治红,时宇,刘顺利,闫福丰,冯孝中. 氧化亚铜/石墨烯纳米复合材料的制备及性能研究. 轻工学报, 2013, 28(2): 44-48.doi: 10.3969/j.issn.2095-476X.2013.02.011

  • 加载中
计量
  • PDF下载量:107
  • 文章访问数:8755
  • 引证文献数:0
文章相关
  • 收稿日期:2016-04-13
  • 刊出日期:2016-07-15
    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    吴慈, 梁玉, 梁振, 等. 整体材料的研制及其在蛋白质组色谱分离中的应用[J]. 轻工学报, 2016, 31(4): 1-14. doi: 10.3969/j.issn.2096-1553.2016.4.001
    引用本文:吴慈, 梁玉, 梁振, 等. 整体材料的研制及其在蛋白质组色谱分离中的应用[J]. 轻工学报, 2016, 31(4): 1-14.doi:10.3969/j.issn.2096-1553.2016.4.001
    WU Ci, LIANG Yu, LIANG Zhen, et al. Preparation of monolithic materials and applications in proteomic chromatographic separation[J]. Journal of Light Industry, 2016, 31(4): 1-14. doi: 10.3969/j.issn.2096-1553.2016.4.001
    Citation:WU Ci, LIANG Yu, LIANG Zhen, et al. Preparation of monolithic materials and applications in proteomic chromatographic separation[J]. Journal of Light Industry, 2016, 31(4): 1-14.doi:10.3969/j.issn.2096-1553.2016.4.001

    整体材料的研制及其在蛋白质组色谱分离中的应用

    • 中国科学院分离分析化学重点实验室, 国家色谱研究分析中心, 中国科学院大连化学物理研究所, 辽宁 大连 116023
    基金项目:国家自然科学基金项目(21575139,21235005,21190043)

    摘要:整体材料由于具有制备简单、传质速度快、低背压、表面易于修饰等优势,在色谱分离领域中应用非常广泛.为使业界了解国内外对整体材料研制的现状,对有机聚合物整体材料、硅胶整体材料、有机-无机杂化整体材料三种整体材料的制备方法及其在蛋白质组学中蛋白质和肽段色谱分离中的应用进行了综述,指出:与填充柱相比,整体柱的分离柱效仍有待进一步提高,可以从整体材料的性能,如比表面积、孔径分布、稳定性、亲水性等方面进行改进.利用整体材料低背压的优势,可制备超长、超细内径毛细管整体柱,有利于微量蛋白质组学样品的高效分离分析.随着对整体材料制备技术的不断深入研究,整体材料也将在食品安全、生命科学、环境问题等众多领域发挥更重要的作用.

    English Abstract

    参考文献 (75) 相关文章 (20)

    目录

    /

      返回文章