JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展

陈迪明

downloadPDF
陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展[J]. 轻工学报, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005
引用本文:陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展[J]. 轻工学报, 2017, 32(5): 32-41.doi:10.3969/j.issn.2096-1553.2017.5.005
CHEN Di-ming. Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation[J]. Journal of Light Industry, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005
Citation:CHEN Di-ming. Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation[J]. Journal of Light Industry, 2017, 32(5): 32-41.doi:10.3969/j.issn.2096-1553.2017.5.005

多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展

  • 基金项目:国家自然科学基金项目(21601160)

  • 中图分类号:O658

Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation

  • Received Date:2017-04-24
    Available Online:2017-09-15

    CLC number:O658

  • 摘要:综述了具有气体吸附和分离功能的多尺度孔道型金属-有机框架(MOFs)材料的研究背景及其在CO 2储存、分离和C 2H 2气体储存方面的应用.指出,具有不同孔道性质的MOFs材料对CO 2的储存与分离及C 2H 2气体储存方面的影响不同,可以通过控制MOFs材料孔道的尺寸、形状、孔道内的官能团来准确地控制其性能;同时,借助单晶衍射技术与原位表征手段(例如原位粉末衍射及红外光谱)可以考察合成材料的构效关系,从而指导MOFs材料的性能优化.然而,部分MOFs材料的水稳定性较差,如果使用含有疏水基团的有机配体及高价态的金属簇(例如Cr 3+,Zr 4+等)作为MOFs分子基构筑单元的方式,有望增强MOFs材料的水稳定性;MOFs材料对专一气体的吸附选择性还有待提升,或可通过设计合成具有动态吸附行为的MOFs材料得以实现.此外,利用分子模拟技术,未来有望真正地将材料的结构与功能提到设计层面,以节约研究成本.
    1. [1]

      SEO J S,WHANG D,LEE H,et al.A homochiral metal-organic porous material for enantioselective separation and catalysis[J].Nature,2000,404(6781):982.

    2. [2]

      LI J R,SCULLEY J,ZHOU H C.Metal-organic frameworks for separations[J].Chemical Reviews,2011,112(2):869.

    3. [3]

      SONG L,ZHANG J,SUN L,et al.Mesoporous metal-organic frameworks:design and applications[J].Energy & Environmental Science,2012,5(6):7508.

    4. [4]

      JUAN-ALCAÑIZ J,GASCON J,KAPTEIJN F.Metal-organic frameworks as scaffolds for the encapsulation of active species:state of the art and future perspectives[J].Journal of Materials Chemistry,2012,22(20):10102.

    5. [5]

      SPOKOYNY A M,KIM D,SUMREIN A,et al.Infinite coordination polymer nano-and microparticle structures[J].Chem Soc Rev,2009,38(5):1218.

    6. [6]

      BUSER H J,SCHWARZENBACH D,PETTER W,et al.The crystal structure of Prussian blue:Fe4[Fe(CN)6]3·xH2O[J].Inorganic Chemistry,1977,16(11):2704.

    7. [7]

      HOSKINS B F,ROBSON R.Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J].Journal of the American Chemical Society,1989,111(15):5962.

    8. [8]

      YAGHI O M,LI H.Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J].Journal of the American Chemical Society,1995,117(41):10401.

    9. [9]

      KITAGAWA S,KONDO M.Functional micropore chemistry of crystalline metal complex-assembled compounds[J].Bulletin of the Chemical Society of Japan,1998,71(8):1739.

    10. [10]

      CHUI S S Y,LO S M F,CHARMANT J P H,et al.A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3]n[J].Science,1999,283(5405):1148.

    11. [11]

      YAGHI O M,O'KEEFFE M,OCKWIG N W,et al.Reticular synthesis and the design of new materials[J].Nature,2003,423(6941):705.

    12. [12]

      DU M,LI C P,LIU C S,et al.Design and construction of coordination polymers with mixed-ligand synthetic strategy[J].Coordination Chemistry Reviews,2013,257(7):1282.

    13. [13]

      DU M,CHEN M,WANG X,et al.Versatile mesoporous DyⅢ coordination framework for highly efficient trapping of diverse pollutants[J].Inorganic Chemistry,2014,53(14):7074.

    14. [14]

      DU M,WANG X,CHEN M,et al.Ligand symmetry modulation for designing a mesoporous metal-organic framework:dual reactivity to transition and lanthanide metals for enhanced functionalization[J].Chemistry-A European Journal,2015,21(27):9713.

    15. [15]

      CHEN M,ZHAO H,SAÑUDO E C,et al.Two isostructural coordination polymers showing diverse magnetic behaviors:weak coupling (niii) and an ordered array of single-chain magnets (CoⅡ)[J].Inorganic Chemistry,2016,55(8):3715.

    16. [16]

      LI C P,CHEN J,LIU C S,et al.Dynamic structural transformations of coordination supramolecular systems upon exogenous stimulation[J].Chem Commun,2015,51:2768.

    17. [17]

      DU M,CHEN M,YANG X G,et al.A channel-type mesoporous In (Ⅲ)-carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors[J].Journal of Materials Chemistry A,2014,2(25):9828.

    18. [18]

      CHEN M,SAÑUDO E C,JIMÉNEZ E,et al.Lanthanide-organic coordination frameworks showing new 5-connected network topology and 3D ordered array of single-molecular magnet behavior in the Dy case[J].Inorganic Chemistry,2014,53(13):6708.

    19. [19]

      LIU C S,CHEN M,TIAN J Y,et al.Metal-organic framework supported on processable polymer matrix by in situ copolymerization for enhanced iron (Ⅲ) detection[J].Chemistry-A European Journal,2017,23(16):3885.

    20. [20]

      LI J R,SCULLEY J,ZHOU H C.Metal-organic frameworks for separations[J].Chemical Reviews,2011,112(2):869.

    21. [21]

      DU M,LI C P,CHEN M,et al.Divergent kinetic and thermodynamic hydration of a porous Cu (Ⅱ) coordination polymer with exclusive CO2sorption selectivity[J].Journal of the American Chemical Society,2014,136(31):10906.

    22. [22]

      CHEN M,ZHAO H,LIU C S,et al.Template-directed construction of conformational supramolecular isomers for bilayer porous metal-organic frameworks with distinct gas sorption behaviors[J].Chemical Communications,2015,51(27):6014.

    23. [23]

      CHEN D M,TIAN J Y,CHEN M,et al.Moisture-stable Zn (Ⅱ) metal-organic framework as a multifunctional platform for highly efficient CO2capture and nitro pollutant vapor detection[J].ACS Applied Materials & Interfaces,2016,8(28):18043.

    24. [24]

      WANG X,CHEN M,DU M.A clear insight into the distinguishing CO2capture by two isostructural DyⅢ-carboxylate coordination frameworks[J].Inorganic Chemistry,2016,55(13):6352.

    25. [25]

      CHEN D M,TIAN J Y,FANG S M,et al.Two isomeric Zn-based metal-organic frameworks constructed from a bifunctional triazolate-carboxylate tecton exhibiting distinct gas sorption behaviors[J].Cryst Eng Comm,2016,18(14):2579.

    26. [26]

      WU H,GONG Q,OLSON D H,et al.Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks[J].Chemical Reviews,2012,112(2):836.

    27. [27]

      PANG J,JIANG F,WU M,et al.A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions[J].Nature Communications,2015(6):7575.

    28. [28]

      CHEN D M,TIAN J Y,LIU C S,et al.Inside back cover:charge control in two isostructural anionic/cationic coii coordination frameworks for enhanced acetylene capture[J].Chemistry-A European Journal,2016,22(42):15151.

    29. [29]

      CHEN D M,TIAN J Y,LIU C S,et al.A bracket approach to improve the stability and gas sorption performance of a metal-organic framework via in situ incorporating the size-matching molecular building blocks[J].Chemical Communications,2016,52(54):8413.

    30. [30]

      CHEN D M,ZHANG N N,TIAN J Y,et al.Pore modulation of metal-organic frameworks towards enhanced hydrothermal stability and acetylene uptake via incorporation of different functional brackets[J].Journal of Materials Chemistry A,2017,5(10):4861.

    31. [31]

      CHEN D M,TIAN J Y,LIU C S.Ligand symmetry modulation for designing mixed-ligand metal-organic frameworks:gas sorption and luminescence sensing properties[J].Inorganic Chemistry,2016,55(17):8892.

    32. [32]

      CHEN D M,ZHANG N N,LIU C S,et al.A mixed-cluster approach for building a highly porous cobalt (Ⅱ) isonicotinic acid framework:gas sorption properties and computational analyses[J].Inorganic Chemistry,2017,56(5):2379.

    33. [33]

      CHEN D M,ZHANG N N,TIAN J Y,et al.Quest for the Ncb-type metal-organic framework platform:a bifunctional ligand approach meets net topology needs[J].Inorg Chem,2017,56(13):7328.

    1. [1]

      史岽瑛,崔超杰,李会林,聂周缓,郑凯君. 光敏性H2[Ag2(W10O32)(BPY)4]复合材料的制备及其光催化氧化环己烷性能研究. 轻工学报, 2020, 35(1): 47-54.doi: 10.12187/2020.01.006

    2. [2]

      高锋,李宁,张崇军,郑建利,刘金峰. 呼出气体酒精含量远程监测系统的设计. 轻工学报, 2015, 30(5-6): 142-145.doi: 10.3969/j.issn.2095-476X.2015.5/6.030

    3. [3]

      孙淑敏,王培远,吴琼. 共价有机骨架材料应用研究进展. 轻工学报, 2016, 31(3): 21-32.doi: 10.3969/j.issn.2096-1553.2016.3.004

    4. [4]

      王培远,康华魁,孙淑敏,方少明. 氨基功能化有机-无机杂化介孔材料合成及药物释放性能研究. 轻工学报, 2013, 28(4): 1-5.doi: 10.3969/j.issn.2095-476X.2013.04.001

    5. [5]

      秦浩,王洋洋,杨永超,刘智敏,佟勇,徐海鑫. 基于HTCC工艺的电化学NO2气体传感器设计与测试. 轻工学报, 2019, 34(4): 59-63.doi: 10.3969/j.issn.2096-1553.2019.04.009

    6. [6]

      赵赫,郑安平,李银华,齐汝宾. 基于长光程近红外光声光谱的微量气体探测研究. 轻工学报, 2019, 34(6): 89-95.doi: 10.3969/j.issn.2096-1553.2019.06.012

    7. [7]

      孙淑敏,周超,吴琼,王培远. 三嗪基共价有机骨架/石墨烯复合材料的合成及其电化学性能研究. 轻工学报, 2018, 33(1): 43-48.doi: 10.3969/j.issn.2096-1553.2018.01.006

    8. [8]

      张肖静,位登辉,陈召,张楠,张红丽. 城市河道有机物、氮、硫污染物的分布规律研究. 轻工学报, 2021, 36(1): 51-57.doi: 10.12187/2021.01.007

    9. [9]

      安毅,李辉,任胜超,聂红资,吴文昊,王瑞,许自成. 有机无机肥配施对白肋烟生长发育及品质的影响. 轻工学报, 2012, 27(4): 69-74.doi: 10.3969/j.issn.1004-1478.2012.04.018

    10. [10]

      邱宝平,李强,刘晓旭,郭连民,祁林,郭鹏,陈亮,张峻松. 非挥发性有机酸与卷烟主流烟气总粒相物pH关系研究. 轻工学报, 2013, 28(5): 30-34.doi: 10.3969/j.issn.2095-476X.2013.05.007

    11. [11]

      王冰,岳保山,彭斌,杨松,刘绍峰,余晶晶,余振华,蔡君兰. 通风分配对细支卷烟主流烟气有机酸释放量的影响研究. 轻工学报, 2021, 36(4): 37-44.doi: 10.12187/2021.04.005

    12. [12]

      司广源,陈晔,梅凯. 厌氧反硫化沉淀法预处理高硫有机废水试验研究. 轻工学报, 2016, 31(5): 25-29.doi: 10.3969/j.issn.2096-1553.2016.5.005

    13. [13]

      刘亚莉,张潍然,张永海,陈宇慧,王会林,董华东. 喷油螺杆压缩机用油气分离器滤芯出口孔径对分离特性的影响. 轻工学报, 2018, 33(4): 50-56.doi: 10.3969/j.issn.2096-1553.2018.04.007

    14. [14]

      金宝丹,李霞,覃贺鲜,王冉,王兰,赵建国,钮劲涛. 纳米零价铁协同硫酸盐对低浓度低有机质剩余污泥水解酸化性能的影响. 轻工学报, 2022, 37(1): 110-117.doi: 10.12187/2022.01.015

    15. [15]

      吴慈,梁玉,梁振,张丽华,张玉奎. 整体材料的研制及其在蛋白质组色谱分离中的应用. 轻工学报, 2016, 31(4): 1-14.doi: 10.3969/j.issn.2096-1553.2016.4.001

    16. [16]

      韩光鲁,陈哲,樊凯奇,张学波,郝彬,任静怡. 用于分离废水中苯酚/苯胺的渗透汽化膜材料研究进展. 轻工学报, 2019, 34(5): 68-77.doi: 10.3969/j.issn.2096-1553.2019.05.010

    17. [17]

      吴学红,赵鑫利,李伟平,常志娟,吕彦力,龚毅. 柜外环境对敞开立式冷藏陈列柜性能影响的多尺度计算研究. 轻工学报, 2015, 30(2): 67-71.doi: 10.3969/j.issn.2095-476X.2015.02.015

    18. [18]

      张旭鑫,张书艳,赵雷,朱杰. 纳米淀粉对含香茅醇马铃薯淀粉-壳聚糖复合膜材多尺度结构和热稳定性的影响. 轻工学报, 2023, 38(1): 27-33.doi: 10.12187/2023.01.004

    19. [19]

      张肖静,陈涛,傅浩强. 土壤中重金属有效态汞的快速检测. 轻工学报, 2018, 33(1): 49-55.doi: 10.3969/j.issn.2096-1553.2018.01.007

    20. [20]

      韩斌慧. 纵轴式掘进机多工况下振动特性试验研究. 轻工学报, 2017, 32(3): 85-95.doi: 10.3969/j.issn.2096-1553.2017.3.014

  • 加载中
计量
  • PDF下载量:112
  • 文章访问数:8614
  • 引证文献数:0
文章相关
  • 收稿日期:2017-04-24
  • 刊出日期:2017-09-15
    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展[J]. 轻工学报, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005
    引用本文:陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展[J]. 轻工学报, 2017, 32(5): 32-41.doi:10.3969/j.issn.2096-1553.2017.5.005
    CHEN Di-ming. Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation[J]. Journal of Light Industry, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005
    Citation:CHEN Di-ming. Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation[J]. Journal of Light Industry, 2017, 32(5): 32-41.doi:10.3969/j.issn.2096-1553.2017.5.005

    多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展

    • 郑州轻工业学院 河南省表界面科学重点实验室, 河南 郑州 450001
    基金项目:国家自然科学基金项目(21601160)

    摘要:综述了具有气体吸附和分离功能的多尺度孔道型金属-有机框架(MOFs)材料的研究背景及其在CO2储存、分离和C2H2气体储存方面的应用.指出,具有不同孔道性质的MOFs材料对CO2的储存与分离及C2H2气体储存方面的影响不同,可以通过控制MOFs材料孔道的尺寸、形状、孔道内的官能团来准确地控制其性能;同时,借助单晶衍射技术与原位表征手段(例如原位粉末衍射及红外光谱)可以考察合成材料的构效关系,从而指导MOFs材料的性能优化.然而,部分MOFs材料的水稳定性较差,如果使用含有疏水基团的有机配体及高价态的金属簇(例如Cr3+,Zr4+等)作为MOFs分子基构筑单元的方式,有望增强MOFs材料的水稳定性;MOFs材料对专一气体的吸附选择性还有待提升,或可通过设计合成具有动态吸附行为的MOFs材料得以实现.此外,利用分子模拟技术,未来有望真正地将材料的结构与功能提到设计层面,以节约研究成本.

    English Abstract

    参考文献 (33) 相关文章 (20)

    目录

    /

      返回文章